
-
NASA CONTRACTOR R E P O W m q 3 3

[#ASb-CR-177433) THE NETRORK QUEUEING
SYSTER (Sterl inq Software) 6 3 p Ava i l :
NTIS HC A04/RP A01 CSCL 09B

The Network Queueing System

B . K . Kingsbury

w 88- 122 97

CONTRACT NAS2-11786
December 1986

U ncla s
G3/6l PI08481

NASA CONTRACTOR REPORT 171433

The Network Queueing System

B. K . Kingsbury
Sterling Software
Palo Alto, CA

Prepared fo r
Ames Research Center
unde r Contract NAS2-11186
December 1986

NASA
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

The
Network Queueing System

Brent A. Kingsbury*

Sterling Software
1121 San Antonio Road, Palo Alto 94303

ABSTRACT

This paper describes the implementation of a networked, UNIX based queueing
system developed for a government contract with the National Aeronautics and
Space Administration (NASA). The system discussed supports both batch and
device requests, and provides the facilities of remote queueing, request routing,
remote status, queue access controls, batch request resource quota limits, and
remote output return.

1. Origins

The invention of the Network Queueing System (NQS) was driven by the need for a good UNIX
batch and device queueing facility capable of supporting such requests in a networked
environment of UNIX machines. More specifically, NQS was developed as part of an effort aimed
a t tying together a diverse assortment of UNUE based machines into a useful computational
complex for the National Aeronautics and Space Administration (NASA).

Today, this computational complex is officially known as the Numerical Aerodynamic Simulator
ProcesJing System Network, otherwise known as the NPSN. The assorted machines in this
network are of varying manufacture, and (as of the time of this writing) include Digital
Equipment Corporation VAXes, Silicon Graphics Irises, large Amdahl 5840 mainframes, and a
Cray Research Incorporated CRAY-2. Each of the machines in the network runs its own vendor-
supplied version of the UNIX operating system, with appropriate kernel and user-space extensions
as necessary.

The presence of UNIX on all of these machines has made possible the creation of a common user
interface, so that despite the obvious hardware differences, users can freely move among the
different machines of the NPSN without being confronted with entirely different software
environments. As part of this common user interface, NQS has been implemented as a collection
of user-space programs providing the required batch and device queueing capabilities for each
machine in the network.

2. Design Goals

NQS was architected and written with the following design goals in mind:

0 Provide for the full support of both batch and device requests. A batch request is defined as a
shell script containing commands not requiring the direct services of some physical device
(other than the CPU resource), that can be executed independently of any user intervention by
the invocation of an appropriate command interpreter (e.g. /bin/csh, /bin/sh). In contrast, a
device request is defined as a set of independent instructions requiring the direct services of a
specific device for execution (e.g. a line printer request).

0 Support all of the resource quotas enforceable by the underlying UNIX kernel implementation
that are relevant to any particular batch request, and its corresponding batch queue.

.* The author is presently an employee of Cray Research Incorporated.

- 2 -

0 Support the remote queueing and routing of batch and device requests throughout the network
of machines running NQS. This means that some mechanism must exist to reliably transport
batch and device requests between distinct machines, even if one or both of the machines
involved crash repeatedly during the transaction.

Modularize all of the request scheduling algorithms so that the NQS request schedulers can be
easily modified on an installation by installation basis, if necessary.

Support queue access restrictions whereby the right to submit a batch or device request to a
particular queue can be controlled, in the form of a user and group access list for any queue.

Support networked output return, whereby the stdout and stderr files of any batch request can
be returned to a possibly remote machine.

0 Allow for the mapping of accounts across machine boundaries. Thus, the account: winston on
the machine called: Amelia might be mapped to the account: chandra on the machine called:
Orville.

Provide a friendly mechanism whereby the NQS configuration on any particular machine can
be modified without having to resort to the editing of obscure configuration files.

Support status operations across the network so that a user on one machine can obtain
information relevant to NQS on another machine, without requiring the user to log in on the
target remote machine.

Provide a design for the future implementation of file staging, whereby several files or file
hierarchies can be staged in or out of the machine that eventually executes a particular batch
request. For files being staged-in, this implies that a copy of the file must be constrpcted on
the execution machine, prior to the execution of the batch request. Such files must then be
deleted upon the completion of the batch request. For files being staged-out, this implies the
actual movement of the file from the ezecution machine, to the eventual destination machine.

8. Implementation Strategies

Before dashing off to implement NQS completely from scratch, a long look was taken at an
already existing UNIX queueing system known as the Multiple Device Queueing System (MDQS),
as developed at the U.S. Army Ballistic Research Laboratory.

At one point, it was even decided that NQS could be implemented as an enhanced version of
MDQS, borrowing heavily from the original MDQS source code. Theoretically a t least, this
strategy was supposed to reduce the work and risk involved in building a networked queueing
system that would satisfy NASA’s needs. This thinking lasted long enough for an early design
document to be written detailing the modifications to be made under such a plan.

The plan however was later abandoned, when it was recognized that the new code required for
the proposed extensions exceeded the siee of the already existing MDQS code. Rather than heap
unwieldy extensions upon a frame never designed for such weight, NQS was built completely from
scratch. This new strategy allowed for the construction of a new framework from which to hang
new ideas, along with many of the concepts included in MDQS. NQS is therefore something old,
and something new.

4. The NQS Landscape

This section of the paper describes the general design and concepts of NQS. It, must be
understood that NQS continues to be developed. This paper discusses only the current state of
affairs, with occasional pointers referencing future areas of improvement.

4.1 The Queue and Request Model

In order to provide support for the two request types of batch and device, NQS implements two
distinctly different queue types, with the respective type names of batch and device. Only batch

- 3 -

queues are allowed to accept and execute batch requests. Similarly, device queues are only
allowed to accept and execute device requests.

In addition to the first two queue types, a third queue type known as a pipe queue exists to
transport requests to other batch, device, or pipe queues a t possibly remote machine destinations.
Readers familiar with MDQS will note that the implementation of three distinctly different queue
types differs substantially from the MDQS philosophy of having only one queue type.

4.1.1 Batch Queues

The first queue type implemented in NQS is called a batch queue. As stated earlier, NQS batch
queues are specifically implemented to run only batch requests.

4.1.1.1 Batch Queue Quota Limits

It is useful to be able to place limits on the amounts of different resources that a batch request
can consume during execution. Towards that end, NQS batch queues have an associated set of
resource quota limits, that all other NQS queue types lack.

I

For a batch request t o be queued in a particular batch queue, any resource quota limits defined
by the request must be le33 than or equal to the corresponding limit as defined for the target
batch queue. If a batch request fails to specify a particular resource limit value for which a limit
is enforceable by the underlying UNIX implementation, then the queued batch request inherits the
Corresponding limit as defined for the target batch queue.

If a resource limit associated with a batch queue is later lowered by a system administrator, then
all requests residing in the queue with a quota limit greater than the new corresponding quota
limit, are given a grandjather clause (and the adjusting system administrator is notified
accordingly). This example illustrates the important principal enforced in NQS that the set of
limits under which a batch request is to run, are determined and frozen at the time that the
batch request is first queued in its destination batch queue.

4.1.1.2 Spawning a Batch Request

The actual execution of a batch request is a somewhat complicated affair. First, a batch request
may require that the output files of stderr and stdout be spooled, t o a possibly remote machine
destination. In order to do this safely, a temporary version of the output files is created in a
protected location known to NQS.

Second, any additional environment variables optionally exported with the request from the
originating (and possibly remote) host, are placed in the environment set for the shell that is
about t o be ezeced.

Third, based on any request shell specifications and the shell strategy policy a t the local host, the
proper shell (e.g. /bin/csh, /bin/ksh, /bin/sh, etc.) is chosen (see the Batch Requeat Shell
Strutegies section below). The chosen shell will be spawned as a login shell, virtually
indistinguishable from the shell that the request owner would have gotten had they logged
directly into the execution machine.

Fourth, all of the resource limits as supported by the underlying UNIX operating system
implementation are applied to the new shell process, as determined for the request a t the time it
was first queued in the batch queue.

After the resource limits have been applied, the proper shell is ezeced, and the shell script that
defines the batch request is actually executed. Upon completion, the spooled output files of stderr
and stdout are returned to their possibly remote machine destinations.

4.1.1.3 Batch Queue Run Limits

To prevent the local host from being swamped with running batch requests, some mechanism
must exist to prevent too many batch requests from running a t any single given time. Currently,
this mechanism is quite simple, and is implemented by the presence of two batch request run

- 4 -

l imits .

The first batch request run limit is global in nature, and places a ceiling on the maximum number
of batch requests allowed to execute simultaneously on the local host.

The second batch request run limit is applied at the queue level, and places a ceiling on the
maximum number of batch requests allowed to execute simultaneously in the containing batch
queue.

When a batch request completes execution, the entire set of batch queues is traversed in order of
decreasing batch queue priority. FOP each batch queue in the order traversed, any eligible batch
requests are spawned until either the queue run limit is reached, or the global batch request run
limit is reached. If upon discovering that no more requests can be spawned for the batch queue
under scrutiny, and the total number of running batch requests is still less than the global batch
request run limit, then the next lower priority batch queue is examined applying the same
algorithm, until all of the batch queues have been examined.

So far, this simple run limit scheme has sufficed as the only tool to control the running batch
request execution load. Since batch requests can vary widely in their consumption of resources,
additional more sophisticated control mechanisms limiting the number of simultaneously
executing batch requests may be required in the future.

4 .I. 2 De vie e Que ues

Device queues represent the second queue type implemented in NQS. Unlike their sibling butch
queues, device queues do not have a set of associated resource quota limits. Device queues do
however have a set of associated devices, which batch queues do not have.

,

4 .1 .2.1 De vices

For each device queue, there exists a set of one or more devices to which requests entering the
device queue can be sent for execution. Each such device in turn has an associated server, which
constitutes the program that is always spawned to handle a request that is given to the device for
execution.

Any imaginable queue-to-device mapping can be configured. In general, N device queues can be
configured to "feed" M devices. The only restriction placed on the value of N and M , is the
obvious one that their respective values be greater than or equal to zero (note that it is possible
for a device queue to exist without any devices in its device set, though such a queue is useless).
It is even possible to have multiple device queues feeding the same device.

4.1.2.2 Spawning a Device Request

When an NQS device completes the task of handling a device request or is found to be idle after a
device request has been recently queued, all of the device queues that "feed" the device are
scanned to determine if they have a queued request that can be handled by the device. Like
MDQS, an NQS device request can specify that a particular device forms type be used to execute
the request. For a queued device request to be deemed eligible for execution by a particular
device, any forms specified by the request must match the forms defined for the device. If the
request does not specify a forms type, then it is assumed that the request can be satisfied by any
device in the mapping set of the queue containing the request.

If two or more queues are found to contain a request that can be executed by the newly idled
device, then the first available request from the device queue with the numerically higher queue
priority is chosen. If two or more such queues have the same queue priority, then the queues are
serviced in the classic "round-robin" fashion.

4.1.2.3 Device Queue Run Limits

Like a batch queue, some mechanism must exist t o keep the number of simultaneously running
device requests from swamping the local host. Unlike a batch queue however, device queues do

- 5 -

not have an associated run limit. Device queues are instead throttled by their associated devices,
which can be disabled as necessary by a system administrator.

4.1.3 Pipe Queues

Pipe queues represent the third queue type implemented in NQS, and are responsible for routing
and delivering requests to other (possibly remote) queue destinations. Pipe queues derive their
name from their conceptual similarity to a pipeline, transporting requests to other queue
destinations.

4.1.3.1 Pipe Queues and Request Tranaport

Differing from both batch and device queues, pipe queues do not have any associated quota limits
or devices. Pipe queues do however have a set of associated deatinatians t o which they route and
deliver requests. Pipe queues also differ from their sibling batch and device queues, in that they
can accept both batch and device requests.

With each pipe queue, there is an associated server that is spawned to handle each request
released from the queue for routing and delivery. Ironically, the spawned instance of a pipe queue
server is called a pipe client, due to the use of the word server in the context of a client/server
network connection.

Thus, when a pipe queue request requires routing and delivery to some destination of the pipe
queue, the associated pipe queue server is spawned as a pipe client, which must then route and
deliver the request to a destination. For each attempted remote destination, this requires the
creation of a network server process on the remote host acting as an agent on behalf of the pipe
queue request. The choice of the term pipe client allows us to use the standard client/server
vocabulary when discussing the queueing and delivery of a pipe queue request to a remote host.

4.1.8.2 Spawning a Pipe Request

When a pipe client is spawned to route and deliver a request, it is given complete freedom to
choose any destinations from the destination set configured for the pipe queue, as possible
destinations for the request. If a selected destination does not accept the request, then the pipe
client is free to try another destination for the request.

It is quite possible for a request to be rejected by all but one of the possible destinations defined
for a pipe queue. It is not necessary to find many destinations willing to accept the request.
Only one accepting destination need exist for the pipe queue request to be handled successfully.

I t is also possible for every single destination of a pipe queue to reject the request for reasons
which are deemed permanent in nature (e.g. all of the destination queues reside on remote
machines where the request owner does not have access to an account). In such situations, the
request is deleted, and mail is sent to the request owner informing him or her of the demise of
their request.

Requests can be rejected by a destination for a plethora of reasons, including remote host failures,
queue type disagreements with the request type, lack of request owner account authorization a t
the remote queue destination, insufficient queue space, or any one of a hundred other reasons
including the simple problem of the destination queue being disabled (unable to accept any new
requests).

Some of the reasons for a destination rejection denote retriable events (the effort to queue the
request a t the destination may succeed if tried later). Examples of this kind of failure include the
destination queue being disabled (the system administrators a t the destination may enable it some
time), and machine failures (the destination machine is crashed, but might be rebooted in the
future).

Other destination rejection reasons are more permanent such as the lack of proper account
authorization a t the remote destination, or request and destination type disagreement (the request
is a device request, and the destination is a batch queue for instance).

- 6 -

Due to the tremendous number of ways in which a request can be rejected by a queue destination,
there is an equally tremendous amount of logic incorporated into NQS that attempts to deal with
the situation. Some failures require that queue destinations be disabled for some finite amount of
time after which the destination is considered retriable. All failures of the retriable variety
require that the pipe queue request be requeued and delayed for some amount of time, after which
an attempt is made to reroute the request.

Even the successful case of a request being tentatively accepted by a queue destination is fraught
with complexity, since one or both machines involved in the transaction may crash at any time.

In summary, pipe queues are both powerful and complex. Since the pipe client configured with
each pipe queue is allowed to choose which destinations to try from the destination set, it is
possible to implement a crude but effective request class mechanism. The pipe client can examine
the request, and then choose an appropriate destination queue that is more appropriate for the
request. Thus, "large" batch requests queued in a pipe queue can be delivered to batch queues
which may run only at night, while "small" batch requests can be delivered to fast batch queues,
which run with a UNIX nice execution value that gives high compute priority, while keeping a
small upper limit on CPU time and maximum file size for the request.

When a pipe queue is used as request class mechanism, it is wise to define the target destination
queues with the attribute of pipeonly, which prevents any requests from being queued in such
queues unless the requests are queued from another pipe queue. In this way, the request class
policies implemented by the pipe queue and associated server (pipe client) can be strictly enforced.

Pipe queues also help to ameliorate the unreliability of the surrounding network and machines.
Even if the proper destination machine is down or unreachable, the pipe queue mechanism can
requeue the request and deliver it later, when the destination machine and connecting network are
restored to operation.

4.1.3.3 Pipe Queue Run Limits

T o prevent pipe queues from flooding the host system with an overly large number of
simultaneously running pipe client processes$ a mechanism identical to that implemented for
batch queues is employed.

4.1.4 Request States

In the previous sections, we have described the general request and queue type concepts
implemented in NQS. This section descends the staircase of detail, focusing on the different states
that a request can go through all the way from its initial creation, to its ultimate execution.

A request residing within an NQS queue can be in one of several states. First of all, the request
may actually be running. This request state exists for requests residing in batch and device
queues, and implies that the request is presently being executed. The analogous request state for
requests residing within a pipe queue is termed routing, since the request is not actually running,
but is rather being routed and delivered to another queue destination.

The second (and most common) request state, is what is termed the queued state. A request in
the queued state is completely ready to enter the running or routing states.

The third request state describes the condition of where a request is waiting for some finite time
interval to pass, after which i t will enter one of the states of queued, running, or routing. This
request state is known as the waiting state.

The fourth request state is known as the arriuin,g state. All requests in the arriving state arc in
the process of being queued from another (possibly remote) pipe queue. When completely
received they will enter one of the other states of waiting, queued, running, or routing.

There are also three additional request states that are not implemented in the current version of
NQS. The first such state is known as the holding state, and describes the condition of where an
operator, user, or both have applied a hold to the given request. Such a request is frozen, and

- 7 -

cannot exit the hold state unless all holds applied by an operator or user have been released.

The second and third unimplemented request states concern the batch request states of staging-in,
and staging-out. These states will not be implemented, unless the demand for the facility of file
staging increases, since it is already possible to use the remote file copy commands in the shell
script that constitutes a batch request, to copy the requisite files to and from the execution
machine for the request. The advantage of implementing file staging is that NQS can use a
transaction mechanism to prevent the execution of a batch request, until all of the input files
have been staged-in to the local host. In this way, crashes of remote machines cannot cause a
batch request to fail. Output files could be similarly staged.

4.2 More Landscaping

The previous major section described the queue and request model implemented in NQS. This
section of the paper describes the implementation of queue access controls, batch request quota
limits, batch request shell strategies, request transaction states, the networking implementation,
account mapping across machine boundaries, NQS configuration control, status operations, and
the possible future implementation of file staging.

4.2.1 Queue Access Controls

In any reasonable queueing system, it is necessary to provide for the configuration of queue access
restrictions. Without such restrictions, there would be no way to prevent every user of the
machine from submitting their requests to the fastest queue with the highest priority and resource
limits on the machine. Thus, NQS supports queue access restrictions.

For each queue, access may be either unrestricted or restricted. If access is unrestricted, any
request may enter the queue. If access is restricted, then a request can only enter the queue if the
requester’s login user-id or login group-id is defined in the access set for the target queue.

All such access permissions are always defined relative to user and group definitions present on
the local host. The restriction that all user and group references be relative to the local host is
not a problem, since request ownership mapping is performed whenever a request is transported
across a machine boundary (see the Account Mapping section below).

Lastly, an additional queue access parameter known as pipeonly can be defined for any queue.
The presence of this queue access attribute prevents requests from being directly placed within the
queue by one of the user commands used to submit an NQS request. Queues with the pipeonly
attribute can only accept requests queued via another pipe queue. As outlined in the summary of
the Spawning a Pipe Request section, this attribute makes is possible to implement a simple
request execution class facility.

4.2.2 Batch Request Quota Limits

As mentioned previously, NQS supports an extensive set of batch request resource quota limits.
However, NQS cannot enforce a batch request resource quota limit unless the underlying UNIX
implementation also supports the enforcement of the same limit. Thus, the resource limit
enforcement functions of NQS have been implemented using an appropriate set of #ifdefs,
allowing the system maintainers to configure the resource limit functions as appropriate.

It must be understood that NQS does not define the interface through which errant batch requests
will be informed of their attempts to consume more of a given resource than is allocated to them.
Upon exceeding some limit types, some UNIX implementations send a signal to the offending
process. Other implementations may simply cause the errant system call to fail, with errno being
set as appropriate.

If a batch request specifies the enforcement of a quota limit that is not enforceable a t the
execution machine, then the limit is simply ignored, and the request is run anyway. It is also
possible to specify that no limit be given to the usage of a particular resource for both a batch
request and batch qaeiie.

- 8 -

Lastly, the NQS implementation of batch request resource limits allows each batch request to
specify a warning limit value for UNIX kernels that allow processes to be warned when they are
getting close to exceeding some hard quota limit. Once again as for hard quota limits, the actual
enforcement mechanism of .warning limits is up to the supporting UNIX kernel.

The full set of batch request resource quota limits recognized by NQS falls into two principal
categories. The first category concerns only those limits applicable to each process of the process
family comprising the running request. This category of limits is known collectively as the per-
process limit set.

The second category concerns only those limits applicable to the entire request. That is, the
consumption of the limited resource as consumed by all processes comprising the running batch
request must never exceed the given per-request limit.

The complete set of batch request quota limits supported by NQS is listed below. Each limit is
shown with its corresponding Qsub(1) command syntax (Qsub(1) is the command used to submit
an NQS batch request). The use of the "(P)" and "(R)" description in the limit definition
indicates the per-process or p e r - r e p e a t nature of the limit:

-IC limit
-Id limit [, warn]
-If limit [, warn]
-lF limit [, warn]
-1m limit [, warn]
-lM limit [, warn]
-In limit
-1s limit
-It limit [, warn]
-lT limit [, warn]
-1v limit [, warn]
-lV limit [, warn 1
-1w limit

- (P) corefile size limit.
- (P) data segment size limit.
- (P) file size limit.
- (R) file space limit.
- (P) memory size limit.
- (R) memory space limit.
- (P) nice execution priority limit.
- (P) stack segment size limit.
- (P) CPU time limit.
- (R) CPU time limit.
- (P) temporary file size limit.
- (R) temporary file space limit.
- (P) working set limit.

The present implementation also includes provisions for the additional limits of:

-16 limit
-lP limit
-1q limit [, warn]
-lQ limit [, warn]

- (R) tape drive device limit.
- (R) number of processors limit.
- (P) Quick device file size limit.
- (R) Quick device file space limit.

These last limits are not presently supported, but are instead reserved for future use. The last
two future limits of - lq, and -lQ are reserved for defining limits on the amount of fast (quick) file
storage to be allocated to a process of the running request, and to the entire running request. An
example of a fast file storage resource can be found in the solid state disk (SSD) product that
Cray Research Incorporated supports with their CRAY-XMP series of computers.

4.2.3 Batch Request Shelf Strategy

The execution of a batch request requires the creation of a shell process to interpret the shell
script which defines the batch request. On many UNIX systems, there is more than one shell
available (e.g. /bin/csh, /bin/ksh, /bin/sh). To deal with this problem, NQS allows a shell
pathname to be specified when a batch request is first submitted.

If no particular shell is specified for the execution of the request, then NQS must have some other
means of deciding which shell to use when spawning the request. The solution to this dilemma
has been to equip NQS with a batch request shell strategy , which can be configured as necessary
by the local system administrators.

The batch request shell strategy as configured on a particular system, determines the shell to be
used when executing a batch request on the local host that fails to identify any specific shell for

- 9 -

its execution. Three such shell strategies can be configured for NQS, and they are known by the
names of

fized,
f r e e , and
login.

A shell strategy of fized causes the request to be run by the f ized shell, the pathname of which is
configured by the system administrator. Thus, a particular NQS installation may be configured
with a fized shell strategy where the default shell used to execute all batch requests is defined as
the Bourne shell.

A shell strategy of free simply causes the user's login shell (as defined in the password file), to be
ezeced). This shell is in turn given a pathname to the batch request shell script, and it is the
user's login shell that actually decides which shell should be used to interpret the script. The free
shell strategy therefore runs the batch request script ezactly as would an interactive invocation of
the script, and is the default NQS shell strategy.

The third shell strategy of login simply causes the user's login shell (as defined in the password
file), to be the default shell used to interpret the batch request shell script.

The strategies of fized and login exist for host systems that are short on available free processes.
In these two strategies, a single shell is ezeced, and that same shell is the shell that executes all of
the commands in the batch request script (barring shell ezec operations in any user startup files:
.profile, .login, .cshrc).

In every case however, the shell that is chosen to execute the batch request is always spawned as a
login shell, with all of the environment variables and settings that the request owner would have
gotten, had they logged directly into the machine.

The shell strategy as configured for any particular host, can always be determined by the NQS
qlinit command.

4.2.4 Transactions

The accurate recording of request state information is a sometimes complicated affair within NQS.
The need to support some reliable mechanism for the recording of request state is particularly
critical when an NQS request is in the process of being routed and delivered to a remote queue
destination. It is also necessary to support some reliable mechanism for detecting interrupted
executions of batch and device requests upon system restart, so that they can be restarted or
aborted depending upon the user's wishes.

T o do this, NQS uses the UNIX file system to record request state information. On the surface,
this use of the UNIX file system to store request state information seems trivial. It's not.

The UNIX file system buffer cache implementation of "lazy write I/O" makes the situation almost
intolerable, since the update of request state information must occur synchronously , for many of
the request state transitions. That is, there are several instances where the state of a particular
request must be accurately recorded on the physical disk medium prior to continuing further with
the transaction, otherwise reliable transaction recovery is impossible.

The need for synchronous state updates becomes absolutely critical when an NQS pipe client
process is routing and delivering a request to a remote queue destination on another machine.
The algorithm used to remotely queue an NQS request must allow for both machines involved in
the transaction to crash, without leaving things in an unrecoverable state.

The algorithm to do this is implemented using a well known technique called the two-phase
commit protocol. While the algorithm is quite interesting, space restrictions prohibit a full
explanation of the technique here, and the reader is referred to the text: Nested Transactions: A n
Approach to Reliable DiJtributed Computing by Moss. l21

- 10-

What will be described here however, is the unusual mechanism implemented in the present
version of NQS to get around the UNIX file system buffer cache.

While AT&T system V release 2 UNIX supposedly supported an undocumented flag in the
open(2) system call forcing synchronous write operations for the opened file descriptor, not all
UNIX implementations running on the various machines of the NPSN supported this feature.
However, an examination of the U N E source code as supplied by all of the different vendors
showed that the l ink(2) system call was synchronous, to the extent that the target file inode had
either been written to disk, or was scheduled to be written to disk upon return from the system
call.

Therefore, since the amount of transaction state information for each request is quite small, NQS
does something unbelievably strange. It uses the modification time field of protected and
preallocated files to store transaction state information for each request.

The update of transaction state information in this manner is performed by setting the
modification time of the appropriately preallocated file (never created or deleted once NQS is
installed), making a link to the updated inode to force its writing to disk, followed by an unlink
to remove the temporary link used to force the 1/0 operation. While the desired synchronous
transaction state update is accomplished using a mechanism that is not very fast or efficient, it
does have at least the virtue of being relatively portable.

All of the code involved in setting and reading transaction state for a request is isolated in a very
small number of NQS source modules. When a synchronous 1 / 0 mechanism becomes supported
as a general UNIX standard, then the implementation of NQS will be changed to take advantage
of it, discarding the atavistic technique described here.

4.2.5 Networking hplementa t ion

At present, all NQS network conversations are performed using the Berkeley socket mechanism,
as ported into the respective vendor kernels or emulated by other means. The only connection
type used by NQS is that of a stream connection, in which NQS assumes that the requisite bytes
will be reliably transmitted to and from the server in the order in which they were written, by
the underlying network software of the respective host systems. Any conversion to the use of the
streams mechanism as developed by AT&T should be extremely straightforward.

In general, all NQS database information is always stored in the form most appropriate for the
local host. If it becomes necessary to communicate information to another remote NQS host, then
the information is converted into a network format understood by all NQS machines.

All network conversations performed by NQS are always done using the classic client/server
model, in which a client process creates a connection to the remote' machine where a server
process is created to act on behalf of the client process.

When this initial connection is created, some introductory information is exchanged between the
two processes. Regardless of the transaction to be conducted, the format of the introduction is
always the same, in which certain key "personality" information is transmitted by the client
process to the remote server. Included as part of this introductory dialogue, are the the client's
identity in the form of its real user-id and corresponding user name a t the client host, and the
timezone in effect at the client's machine.

The parameters of real user-id and user name are both passed to the server process, so that the
server can map the identity of the client to the appropriate account a t the remote server machine.
Although one of these two parameters is sufficient, both are passed so that the client mapping a t
the server machine can be performed by either user-id or user name, depending upon the
implementation a t the remote host.

The timesone for the client is also passed across so that future implementations of NQS when
performing remote status operations, will properly display event times using the timezone of the
client.

- i i -

Lastly, the initial dialogue is the obvious place in which attempts can be made by malevolent
users to try to gain unauthorized entry to a remote machine. At present, the only mechanism to
prevent .this, is the difficulty in faking the NQS protocols, and the requirement that all
networking connections be made from privileged ports that can only be gotten by privileged root
processes.

4.2.6 Account Mapping

When a network connection is established between an NQS client process and a remote NQS
server process, an account mapping must be performed so that the network server a t the remote
machine can take on the proper identity attributes. This mapping is performed for all network
conversations. In particular, the transport of a batch or device request requires that the
ownership of the request be adjusted as appropriate, since the user-id of the request owner is not
necessarily the same on all machines.

This mapping can be performed either by mapping the client’s host and user-id, or client’s host
and user name to the proper account. In both cases though, the mapping must be done by the
remote server machine if there is to be any semblance of security.

The choice of whether to map user-id or user name values was the subject of intense debate. In
the beginning, the mapping was to have been made by mapping user-ids. Near the very end of
the project, it was mandated that the mapping be performed by user name, and not user-id.

The present implementation of NQS has therefore adopted the defensive position that the server
machine should make the decision as to which algorithm to use when performing an account
mapping. Since both the user-id and user name of the client process are available to the server
process (see the Networking Implementation section), the server can use either one when
performing the account mapping.

Beyond the problem of user-id versus user name mapping, an additional problem is posed by the
need to determine the identity of the client’s host, irrespective of the network interface upon
which a connection is made. In the environment of the NPSN, there are often at least two
different principal paths by which a machine can be reached. The example paths typically include
the interfaces of ethernet and hyperchannel, and lead to the existence of entries in the UNIX
/etc/hosts 61e where the names of amefiu-hy and amefia-ec denote the two different paths of
hyperchannel and ethernet to the same machine known locally as amelia.

NQS however requires that it be able to tell without ambiguity that connections coming from
amelia-hy and amelia-et denote connections coming from the same machine, even though the
entries in the /etc/hosts file are separate.

To do this, it was necessary to create the notion of a m a c h i n e d , a number that uniquely
identifies a client machine, irrespective of the path used to conduct the network conversation.
Thus, an additional mapping mechanism was created to map different client host addresses to a
single unique machine-id.

Like the user-id versus user name mapping controversy, this decision was also caught in a
maelstrom of controversy. When the dust finally settled, the machine-id concept was still present
in the NQS implementation. Unfortunately, the storm of controversy swept away the tools which
were going to be used to administer the machine-id mappings. Thus, the present implementation
provides a rudimentary program called nmapmqr which can be used to painfully create the
requisite machine-id mappings.

Someone receiving NQS source code for the first time would do well to either implement their own
machine-id mapping mechanism, or polish the present mechanism.

4.2.7 Configuration Control

All of the setup and configuration of NQS is accomplished through the use of a single
configuration program known as the qmgr utility. This program establishes a connection to the

- 12 -

local NQS daemon, and transmits message packets to perform the various configuration
commands implemented in NQS. This program is quite user friendly, and provides an on-line
help facility.

The use of an intelligent configuration program to setup and modify NQS on the local machine
provides many benefits, one of which is the benefit of consistency. One cannot for example, add a
queue-to-device mapping for a non-existent device or queue.

When given a particular command such as adding a device to the queue-to-device mapping set for
some queue, the qmgr utility builds a message update packet which is then sent to the local NQS
daemon for processing. The local NQS daemon then successfully performs the update or returns
an error code, which the qmgr program diagnoses. In either case, the final outcome of the
command is always displayed to the user system administrator.

4.2.8 Status Operations

All of the obvious status operations are supported by NQS, including device, request, queue, and
limit queries. The latter status operation is used to determine the set of batch request resource
limits supported by NQS on the local machine.

These status functions are supported by the respective NQS commands: qdev, qatat, and qlirnit,
with qstat providing information about previously queued requests and their containing queues.

Due to time constraints, the only status function which has been networked is the qstat
command. As time becomes available, this situation will hopefully be corrected.

4.2.9 File Staging

Although file staging is not presently implemented by NQS, future versions of NQS may
implement such a facility. A thorough examination of the NQS source code will reveal that
provisions have been made for this eventuality in both the request transaction state mechanism,
and the batch request data structures.

5. Concluaion

NQS is only another effort aimed at providing a more complete queueing system for a collection of
UNIX machines operating in a networked environment.

As mentioned in the Implementation Strategies section, NQS was designed and written after a
careful examination of a previous UNIX queueing system known as MDQS. It is hoped that others
will now build on NQS, as NQS has been built from ideas in MDQS.

- 13 -

REFERENCES

1. Kingston, Douglas P. 111, A Tour Through the Multi-Device Queueing System, revised for
MDQS 2.0, Ballistic Research Laboratory, Army Armament Research And Development
Command (AARADCOM). September 12, 1983.

2. Moss, J. Elliot B., Nested Transactions: A n Approach to Reliable Distributed Computing,
Cambridge, Massachusetts: The MIT Press, 1985.

Appendix:

NQS Manual Pages

1

NAME
qdel - delete or signal NQS request(s).

qdel [-k] [-sign0] [-u username] request-id ..,

Qdel deletes all queued NQS requests whose respective request-id is listed on the command line.
Additionally, if the flag -k is specified, then the default signal of SIGKILL (-9) is sent to any
running request whose request-id is listed on the command line. This will cause the receiving
request to exit and be deleted. If the flag -sign0 is present, then the specified signal is sent
instead of the SIGKILL signal to any running request whose request-id is listed on the command
line. In the absence of the -k and -sign0 flags, qdel will not delete a running NQS request.

To delete or signal an NQS request, the invoking user must be the owner; namely the submitter
of the request. The only exception to this rule occurs when the invoking user is the superuser, or
has NQS operator privileges as defined in the NQS manager database. Under these conditions, the
invoker may specify the -u username flag which allows the invoker to delete or signal requests
owned by the user whose account name is username. When this form of the command is used,
all request-ids listed on the command line are presumed to refer to requests owned by the
specified user.

An NQS request is always uniquely identified by its request-id, no matter where it is in the net-
work of the machines comprising the NPSN. A request-id is always of the form: aeqno or
seqno .hostname where hostname identifies the machine from whence the request was originally
submitted, and seqno identifies the sequence number assigned to the request on the originating
host. If the hostname portion of a request-id is omitted, then the local host is always assumed.

The request-id of any NQS request is displayed when the request is first submitted (unless the
silent mode of operation for the given NQS command was specified). The user can also obtain the
request-id of any request through the use of the qstat(1) command.

When an NQS request is signalled by the methods discussed above, the proper signal is sent to all
processes comprising the NQS request that are in the same process group. Whenever an NQS
request is spawned, a new process group is established for all processes in the request. However,
should one or more processes of the request successfully execute a setpgrp() system call, then such
processes will not receive any signals sent by the qdel(1) command. This can lead to "rogue"
request processes which must be killed by other means such as the ki l l (1) command. For the
UNIX implementations that support the ability to "lock" a process, and all of its progeny into a
proeess-group, NQS will exploit this capability to prevent processes from "escaping" in this
manner.

qdev(l), qlimit(l), qpr(l), qstat(l), qsub(l),
ki11(2), setpgrp(2), signal(2) in the NPSN UNIX System Programmer Reference Manual.
qmgr(1M) in the NPSN UNIX System Administrator Reference Manual.

Origin: Sterling Software Incorporated

August 1985 - Brent Kingsbury, Sterling Software
Original release.

SYNOPSIS

DESCRIPTION

CAVEATS

SEE ALSO

NPSN HISTORY

May 1986
Second release.

Page 1

NAME
qdev - display status of NQS devices

qdev [device-name] [device-name9host-name ...]

Qdeu displays the status of devices known to the Network Queueing System (NQS).

SYNOPSIS

DESCRIPTION

+ If no devices are specified, then the current state of each NQS device on the local host is
displayed. Otherwise, the response is limited to the devices specified. Devices may be specified
either as device-name or device-name@host-name. In the absence of a host-name specifier, the
local host is assumed.

A device header with several headings is displayed for each of the selected devices. The first
heading in a device header appears as Device:, and is followed by the name of the device format-
ted as device-name@host-name. The second heading of Fullname: is followed by the full path
name of the special file associated with the device. The third heading of Server: is followed by
the command line which will be used to ezecue(2) the device server. The fourth heading of
Forms: is followed by the forms configured for the device.

The final heading of Status: prefaces a display of the general device state. The general state of a
device is defined by two principal properties of the device.

The first property concerns whether or not the device is willing to continue'accepting queued
requests. If. i t is, the device is said to be ENABLED. If the device is unwilling to continue
accepting queued requests, and is idle, its state is DISABLED. A third state of
ENABLEDICLOSED is used to describe a device that is unwilling to continue accepting
queued requests, but is not yet idle.

The second principal property of a device concerns whether or not the device is busy. There are
three cases. If the device is busy, i t is said to be ACTIVE. If the device is idle and not known
to be out of service, i t is said to be INACTIVE. Finally, if the device is idle and known to be
out of service, i t is said to be FAILED. FAILED covers both hardware and software failures.

If a device is busy, information about the active request follows the device header. The request-
name, request-id, and the name of the user who submitted the request are all displayed.

qdel(l), qlimit(l), qpr(l), qstat(l), and qsub(1)
in the NPSN UNIX System Programmer Reference Manual.
qmgr(1M) in the NPSN UNIX System Administrator Reference Manual.

SEE ALSO

NPSN HISTORY
Origin: Sterling Software Incorporated

May 1986 - Robert Sandstrom, Sterling Software
Original release.

Page 1

QLIMIT (1)

I NAME

~ SYNOPSIS

qlimit - show supported batch limits, and shell strategy for the named host(s).

qlimit [host-name ...]

&limit displays the set of batch request resource limit types that can be directly enforced on the
implied local host or named hosts, and also the batch request shell strategy defined for the implied
local host or named hosts.

If no host-names are given, then the information displayed is only relevant to the local host.
Otherwise, the supported batch request limits, and batch request shell strategy for each of the
named hosts is displayed.

NQS supports many batch request resource limit types that can be applied to an NQS batch
request. However, not all UNM implementations are capable of supporting the rather extensive
set of limit types that NQS provides.

The set of limits applied to a batch request, is always restricted to the set of limite that can be
directly supported by the underlying UNM implementation. If a batch request specifies a limit
that cannot be enforced by the underlying UNIX implementation, then the limit is simply ignored,
and the batch request will operate as though there were no limit (other than the obvious physical
maximums), placed upon that resource type.

When an attempt is made to queue a batch request, each limit-value specified by the request (that
can also be supported by the local UNIX implementation), is compared against the corresponding
limit-value as configured for the destination batch queue. If the corresponding batch queue limit-
value for all batch request limit-values is defined as unlimited, or is greater than or equal to the
corresponding batch request limit-value , then the request can be successfully queued, provided
that no other anomalous conditions occur. For request infinity limit-values , the corresponding
queue limit-value must also be configured as infinity.

These resource limit checks are performed irrespective of the batch request arrival mechanism,
either by a direct use of the qsub(1) command, or by the indirect placement of a batch request
into a batch queue via a pipe queue. It is impossible for a batch request to be queued in an NQS
batch queue if uny of these resource limit checks fail.

Finally, if a request fails to specify a limit-value for a resource limit type that is supported on the
execution machine, then the corresponding limit-value as configured for the destination queue,
becomes the limit-value for the unspecified request limit.

Upon the successful queueing of a request in a batch queue, the set of limits under which the
request will execute is frozen, and will not be modified by subsequent qmgr(1M) commands that
alter the limits of the containing batch queue.

As mentioned above, this command also displays the shell strategy as configured for the implied
local host, or named hosts. In the absence of a shell specification for a batch request, NQS must
choose which shell should be used to execute that batch request. NQS supports three different
algorithms, or strategies to solve this problem that can be configured for each system by a system
administrator, depending on the needs of the user’s involved, and upon system performance cri-
terion.

The three possible shell strategies are called:

DES CRIP TI0 N

f ixed ,
f ree , and
login.

QLIMIT (1)

These shell strategies respectively cause the configured fized shell to be exec'd to interpret all
batch requests, cause the user's login shell as defined in the password file to be exec'd which in
turn chooses and spawns the appropriate shell for running the batch shell script, or cause only the
user's login'shell to be exec'd to interpret the script.

A shell strategy of fized means that the same shell as chosen by the system administrator, will be
used to execute all batch requests.

A shell strategy of free will run the batch request script ezactly as would an interactive invoca-
tion of the script, and is the default NQS shell strategy.

The strategies of fized, and login exist for host systems that are short on available free processes.
In these two strategies, a single shell is exec'd, and that same shell is the shell that executes all of
the commands in the batch request shell script.

When a shell strategy of fized has been configured for a particular NQS system, then the "fixed"
shell that will be used to run al l batch requests at that host is displayed.

qdel(l), qdev(l), qpr(l), qstat(l), and qsub(1) in the NPSN UNIX Syatem Programmer Reference
Manual.
qmgr(1M) in the NPSN UNIX Syatem Administrator Reference Manual.

Origin: Sterling Software Incorporated

May 1986 - Brent Kingabury, Sterling Software
Original release.

SEE ALSO

1
NPSN HISTORY

Page 2

QMGR(1 M)

NAME
qmgr - NQS queue manager program

SYNOPSIS
qmgr

Qmgr is a program used by the System Administrator or System Operator to control NQS
requests, queues, devices, and the general NQS configuration a t the local machine.

An NQS request is a request by a user or user program to perform a function that requires. a
delay in servicing (e.g., after a certain time). Examples of such functions are the the scheduling
of a shared serial-access resource (e.g., a printer), and the scheduling of batch job requests. A
device queue holds requests for resources such as printers and Computer Output Microfilm (COM)
units. A batch queue holds requests for scheduled, perhaps delayed, processing by various subsys-
tems in the NPSN. A pipe queue is a queue which can pass queued requests on to other pipe
queues, batch queues, or device queues. An NQS device is a site at which a shared serial-access
resource such as a printer is offered. A daemon is a process which is designed to run continu-
ously, providing some service when needed. (See the QUEUE TYPES section below for more
information concerning queues.) Lastly, an NQS manager identifies a person who is capable of
changing any NQS characteristic on the local machine. An NQS operator identifies a person who
can execute only the operator commands as a proper subset of all the commands provided by the
qmgr(1m) utility.

The following paragraphs describe the syntax of each Qmgr(1m) command. All command key-
words are recognized regardless of upper or lower case usage. Keyword characters shown in
uppercase indicate the smallest possible abbreviation of the keyword for the particular command
being described.

ABort Queue queue [seconds]

DESCRIPTION

Definitions

Commands

All requests in the named queue that are currently running are aborted as follows. A
SIGTERM signal is sent to each process of each request presently running in the named
queue. After the specified number of seconds of real time have elapsed, a SIGKILL signal
is sent to all remaining processes for each request running in the named queue. If a
seconds value is not specified, then the delay is sixty seconds. All requests aborted by
this command are deleted, and all output files associated with the requests are returned
to the appropriate destination.

NQS operator privileges are required to use this command.

ADd Queues = (queue [, queue ...]) complez
Add the specified queue(s) to the batch queue complex named complez.

Full NQS manager privileges are required to use this command.

ADd DEStination = destination queue
ADd DEStination = (destination [, destination ...]) queue

The specified destination(8) are added as valid destinations for a pipe queue named
queue.

Full NQS manager privileges are required to use this command.

QMGR(1M)

ADd DEVice = device queue
ADd DEVice = (device [, device ...]) queue

The specified deuice(8) are added as resources to service requests from queue. The
device(8) must exist (see Create DEVICE below).

Full NQS manager privileges are required to use this command.

ADd Forms form-name ...
The specified form-name(8) are added to the list of valid forms.

Full NQS manager privileges are required to use this command.

ADd Groups = group queue
ADd Groups = (group [, group ...]) queue

'

The specified group(8) are added to the access list for queue. There are two ways to
specify a group:

group name
[group id]

Full NQS manager privileges are required to use this command.

ADd Managers manager ...
The specified manager(s) are added to the list of authorized NQS managers with
privileges as specified. A manager specification consists of an account name specification,
followed by a colon, followed by either the letter m or the letter 0 . There are four ways
to specify an account name:

local-account-name
[loc al-use r-id]
[remote-wer-id] @remote-machine-name
[remote-use tidl @[remote-machine-mid]

If the account name specification is followed by : m , then the account is designated as an
NQS manager account, capable of using all qmgr commands. If the account name
specification is followed by :o, then the account is designated as an NQS operator
account, capable of only using those commands,appropriate for an NQS operator.

Full NQS manager privileges are required to use this command.

ADd Users = uaer queue
ADd Users = (user [, user ...]) queue

The specified user(8) are added to the access list for queue. There are two ways to
specify a user:

user name
[user id]

Full NQS manager privileges are required to use this command.

Create Batch-queue queue PRiority = n [PIpeonly]
[Run-limit = n]

Page 2

Define a batch queue named queue with inter-queue priority n (0.33). If P Ipeon ly is
specified, then requests may enter this queue only if their source is a pipe queue. The
specification of a Run-limit sets a ceiling on the maximum number of.requests allowed
to run in the batch queue at any given time. The default run-limit is one. (See the
QUEUE TYPES section below for more information.)

Full NQS manager privileges are required to use this command.

Create Complex = (queue [, queue ...]) complez
. Create a queue complez consisting of the specified set of batch queues. NQS provides for

the grouping of a set of batch queues into a queue complex which can have an associated
Run-limit.

Create Pipe-queue queue P R i o r i t y = n Server = (server)
[Des t ina t ion = destination]
[Des t ina t ion = (destination [, destination ...])]
[PIpeon ly] [Run-limit = n]
Define a pipe queue named queue with inter-queue priority n (0..63) and associate i t with
a server. This is done by specifying an absolute path name to the program binary
(server) and any arguments required by the program. After Des t ina t ion appears a list
of one or more destination queues that requests from this pipe queue may be sent to. If
P Ipeon ly is specified, then requests may enter this queue only if their source is a pipe
queue. Run-limit sets a ceiling on the maximum number of requests allowed to run in
the pipe queue at any given time. (See the QUEUE
TYPES section below for more information.)

The default run-limit is one.

Full NQS manager privileges are required to use this command.

DElete Complex complez
Delete a queue complez.

Full NQS manager privileges are required to use this command.

Create DEVICE device Forms = forms FUl lname = filename
Server = (server)
Define a device with the specified forms and associate it with a server. This is done by
specifying an absolute path name to the program binary (server) and any arguments
required by the program. Filename is the absolute path name of the device (special file)
and is typically /devldevice .
Full NQS manager privileges are required to use this command.

Create DEVICE-queue queue PRiority = n [Device = device]
[Device = (device [, device ...])]
[PIpeonIy]
Define a device queue named queue with inter-queue priority n (0..63). If P Ipeon ly is
specified, then requests may enter this queue only if their source is a pipe queue. After
Device appears a list of one or more devices that may service this queue. (See the
QUEUE TYPES section below for more information.)

Full NQS manager privileges are required to use this command.

' Page 3

QMGR (1M)

Full NQS manager privileges are required to use this command.

D E l e t e D E S t i n a t i o n = destination queue
DElete D E S t i n a t i o n = (destination [, destination ...]) queue

Delete the mappings from the pipe queue queue to the destination queues. All requests
from the named queue being transferred to a deleted destination complete normally. If
all destinations for a pipe queue are deleted in this manner, then the pipe queue is
effectively stopped.

Full NQS manager privileges are required to use this command.

DEle t e DEVice device
Delete the specified d e v i c e . A device must be disabled to delete it from the device set (see
DIsable Device below).

Full NQS manager privileges are required to use this command.

D E l e t e DEVice = device queue
DElete DEVice = (device [, device ...]) queue

Delete the mappings from the device queue queue to the device(s) . All requests from the
named device queue running on any of the named devices are allowed to complete nor-
mally. If ALL queue-to-device mappings for the named device queue are removed by this
command, then the queue is effectively stopped.

Full NQS manager privileges are required to use this command.

D E l e t e Forms form-name ...
The specified form-name(s) are deleted from the list of valid forms.

Full NQS manager privileges are required to use this command.

D E l e t e Groups = group queue
DElete Groups = (group [, group ...]) queue

The specified group(3) are deleted from the access list for queue. There are two ways to
specify a group:

group name
[group id]

Full NQS manager privileges are required to use this command.

D E l e t e Managers manager ...
The specified manager(s) are deleted from the list of authorized NQS managers. A
manager specification consists of an account name specification, followed by a colon, fol-
lowed by either the letter m or the letter 0 . There are four ways to specify an account
name:

local-account-name
[lo c a 1- us e r-id J
[remote_user_id]~remote~machine~name
[remote~user~id]Q[remote_machine_midJ

Page 4

If the account name specification is followed by :m, i t is understood that the account is
currently permitted to use all qmgr commands. If the account name specification is fol-
lowed by : o , i t is understood that the account is currently permitted to use only those
commands appropriate for an operator to use. The root account always has full
privileges.

Full NQS manager privileges are required to use this command.

D E l e t e Queue queue
The queue is deleted. To delete a queue, no requests may be present in the queue and
the queue MUST be disabled (see DIsable Queue below). Any queue-to-device map-
pings are updated accordingly.

Full NQS manager privileges are required to use this command.

D E l e t e Request requeatid ...
Delete the request(s) named by the requeatid(8). This command can delete both running
and non-running requests. If a request is running, then all processes of the request are
sent a SIGKILL signal.

NQS operator privileges are required to use this command.

DElete Users = user queue
DElete Users = (user [, user ...]) queue

The specified uaer(a) are deleted from the access list for queue. There are two ways to
specify a user:

uaer name
(uacr id]

Full NQS manager privileges are required to use this command.

DIsable Device device
The current request will complete. After that, the device is prevented from handling any
more requests until it is enabled (see E N a b l e Device below). If the disabled device was
the last enabled device in a queue-to-device mapping, then the device queue is effectively
stopped.

NQS operator privileges are required to use this command.

DIsable Queue queue
Prevent any more requests from being placed in this queue.

NQS operutor privileges are required to use this command.

ENable Device device
If the device is already enabled, then this is a no-op. Otherwise, the device becomes
available to handle requests.

NQS operutor privileges are required to use this command.

QMGR (IM)

ENable Queue queue
If the queue is already enabled, then this is a no-op. Otherwise, the queue is enabled to
accept new requests.

NQS operator privileges are required to use this command.

Exit
Exit from the NQS manager subsystem.

Help [command]
Get help information. Help without an argument displays information about what com-
mands are available. Help with an argument displays information about that command.
The command may be partially specified as long as it is unique. A more complete help
request yields more detailed information.

The Help command provides information that is often more extensive than the command
descriptions in this manual page! Use it.

Lock Local-daemon
Lock the NQS local daemon into memory. See plock(2).

NQS operator privileges are required to use this command.

MODify Request [Nice-limit = nice] [RTime-limit = Tlimit]
[RMemory-limit = Mlimit] requedid
Modify parameters for the request specified by requeatid. Nice is the initial nice value
for the request. Tlimit is a per request CPU time limit. Mlimit is a per request memory
limit. For the syntax of these limits, see the LIMITS section below.

NQS operator privileges are required to use this command.

MOVe Queue queuef queue2
Move all requests currently in queuef to queue&.

NQS operutor privileges are required to use this command.

MOVe Request requeatid . . . queue
Move the request(s) named by the requeatid(a) to the named queue I

NQS operator privileges are required to use this command.

Purge Queue queue
All queued requests are purged (dropped) from the queue and are irretrievably lost. Run-
ning requests in the queue are allowed to complete.

NQS operator privileges are required to use this command.

Remove Queue = (queue [, queue ...]) complez
Remove the specified queue(8) from the batch queue complex named complex.

Full NQS manager privileges are required to use this command.

~

Page 7

SEt COMplex Run-limit = run-limit complez
Change the run-limit of an NQS queue complez. The run-limit determines the maximum
number of requests that will be allowed to run in the queue complez at any given time.

NQS operator privileges are required to use this command.

SEt CORefile-limit = (limit) queue
Set a per-process maximum core file size limit for a batch queue against which the per-
process maximum core file size limit for a request may be compared. If the local host
does not support per-process core file size limits, then this command will report an error.
Otherwise, every batch queue on the local host will have a per-process maximum core file
size limit associated with it at all times. If a request already in the queue has asked for
more than the new limit, then it will be given a grandfather clause. A request specifying
a per-process core file size limit may only enter a batch queue if the queue’s limit is
greater than or equal to the request’s limit. For the syntax of l imit, see the LIMITS
section below.

Full NQS manager privileges are required to use this command.

SEt DAta-limit = (limit) queue
Set a per-process maximum data segment size limit for a batch queue against which the
per-process maximum data segment size limit for a request may be compared. If the
local host does not support per-process data segment size limits, then this command will
report an error. Otherwise, every batch queue on the local host will have a per-process
maximum data segment size limit associated with it at all times. If a request already in
the queue has asked for more than the new limit, then i t will be given a grandfather
clause. A request specifying a per-process maximum data segment size limit may only
enter a batch queue if the queue’s limit is greater than or equal to the request’s limit.
For the syntax of l imit, see the LIMITS section below.

Full NQS manager privileges are required to use this command.

SEt DEBug level
Set the debug l e v e l . The following values are valid:

0 No debug
1 Minimum debug
2 Maximum debug

Full NQS manager privileges are required to use this command.

SEt DEFault Ratch-request Priority priority
Set the default intra-batch-queue priority. This is NOT the UNIX execution time prior-
ity. This is the priority used if the user does not specify an intra-queue priority parame-
ter on the qeub(1) command.

Full NQS manager privileges are required to use this command.

SEt DEFault Batch-request Queue queue
Set the default batch queue. This is the queue used if the user does not specify a queue
parameter on the qaub(1) command.

QMGR(1M)

Full NQS manager privileges are required to use this command.

SEt DEFault DEStination-retry Time retry-lime
Set the default number of hours that can elapse during which time a pipe queue destina-
tion can be unreachable, before being marked as completely failed.

Full NQS manager privileges are required to use this command.

SEt DEFault DEStination-retry Wait interval
Set the default number of minutes to wait before retrying a pipe queue destination that
was unreachable at the time of the last attempt.

Full NQS manager privileges are required to use this command.

SEt DEFault DEVice-request Priority priority
Set the default intra-device-queue priority. This is the priority used if the user does not
specify an intra-queue priority parameter on the qpr(1) command.

Full NQS manager privileges are required to use this command.

SEt DEFault Print-request Forms form-name
Set the default print forms to form-name. This is the forms used if the user does not
specify a forms parameter on the qpr(1) command.

Full NQS manager privileges are required to use this command.

SEt DEFault Print-request Queue queue
Set the default print queue. This is the queue used if the user does not specify a queue
parameter on the qpr(1) command.

Full NQS manager privileges are required to use this command.

SEt DEStination = destination queue
SEt DEStination = (destination [, destination ...]) queue

Associate one or more destination queues with a particular pipe queue.

Full NQS manager privileges are required to use this command.

SEt DEVICE = device queue
SEt DEVICE = (device I , device ... J) queue

Associate one or more devices with a particular queue.

Full NQS manager privileges are required to use this command.

SEt DEVICE-server = (Server) device
Associate a server with a dev ice . Server should consist of the absolute path name to the
program binary followed by any arguments required by the program.

Full NQS manager privileges are required to use this command,

SEt Forms form-nume ...
Specify the valid form-name(s). Other valid forms may be added to this list (see ADd

Page 8

I QMGR(LM) ,

Forms above).

Full NQS manager privileges are required to use this command.

SEt Forms = form-name device
Set the form-name for a dev ice .

Full NQS manager privileges are required to use this command.

SEt LIfetime lifetime
Set pipe-queue request lifetime in hours.

Full NQS manager privileges are required to use this command.

SEt Log-file filename
Specify the name of the log file for NQS messages.

Full NQS manager privileges are required to use this command.

SEt MA11 userid
Specify the userid used to send NQS mail.

Full NQS manager privileges are required to use this command.

SEt MANagers manager ...
The list of authorized NQS managers is set to the specified manager($). A manager
specification consists of an account name specification, followed by a colon, followed by
either the letter m or the letter 0 . There are four ways to specify an account name:

local-account-name
[local-uaer-id]
[remote~u~er~~d]@remote~mach~ne~name
[remote-uaer-id] @[remote-machinc-mid]

If the account name specification is followed by :m, then the account is designated as an
NQS manager account, capable of using all qmgr commands. If the account name
specification is followed by :o, then the account is designated as an NQS operator
account, capable of only using those commands appropriate for an NQS operator. The
root account always has full privileges. Also see ADd Manager above.

Full NQS manager privileges are required to use this command.

SEt MAXimum Copies copies
Set the maximum number of print copies.

Full NQS manager privileges are required to use this command.

SEt MAXimum Open-retries retries
Specify the maximum number of retries for a failed device open.

Full NQS manager privileges are required to use this command,

I Page 9

QMGR(1M)

SEt MAXimum Print-sice size
Specify the maximum size of an NQS print file in bytes.

Full NQS manager privileges are required to use this command.

SEt NEtwork Client = (client)
Specify the network client to be used. Client should consist of th
the client followed by any arguments required by the client.

Full NQS manager privileges are required to use this command.

SEt NEtwork Daemon = (daemon)

absolute ath am of

Specify the network daemon to be used. Daemon should consist of the absolute path
name of the daemon followed by any arguments required by the daemon.

Full NQS manager privileges are required to use this command.

SEt NEtwork Server = (aeruer)
Specify the network server to be used. Server should consist of the absolute path name
of the server followed by any arguments required by the server.

Full NQS manager privileges are required to use this command.

SEt NIce-value-limit = nice-value queue
Set the UNIX nice-value limit for a batch queue, against which the nice-value for a
request may be compared. If a request already in the queue has asked for treatment
more favorable than the new nice-value, then it will be given a grandfather clause. A
request specifying a nice-value may only enter a batch queue if the queue’s nice value is
numerically less than (more willing to allow access to the CPU) or equal to the request’s
nice value. Nice-value is an integer preceded by an optional negative sign.

Full NQS manager privileges are required to use this command.

SEt NO-Access queue
Specify that no one will be allowed to place requests in queue. Root is an exception;
requests submitted by root are always allowed into a queue, even if root is not explicitly
given access.

Full NQS manager privileges are required to use this command.

SEt NO-Default Batch-request Queue
Indicate that there is to be no default batch request queue.

Full NQS manager privileges are required to use this command.

SEt NO-Default Print-request Forms
Indicate that there is to be no default print request forms.

Full NQS manager privileges are required to use this command.

SEt NO-Default Print-request Queue
Indicate that there is to be no default print request queue.

Page 10

QMGR(1M)

Full NQS manager privileges are required to use this command.

SEt NO-Network-daemon
Indicate that there is to be no network daemon.

Full NQS manager privileges are required to use this command.

SEt Open-wait interval
Specify the number of seconds to wait between failed device opens.

Full NQS manager privileges are required to use this command.

SEt PER-Process Cpu-limtt = (limit) queue
Set a per-process maximum CPU time limit for a batch queue against which the per-
process maximum CPU time limit for a request may be compared. If the local host does
not support per-process CPU time limits, then this command will report an error. Other-
wise, every batch queue on the local host will have a per-process maximum CPU time
limit associated with it at all times. If a request already in the queue has asked for more
than the new limit, then i t will be given a grandfather clause. A request specifying a
per-process maximum CPU time limit may only enter a batch queue if the queue’s limit
is greater than or equal to the request’s limit. For the syntax of l imit, see the LIMITS
section below.

Full NQS manager privileges are required to use this command.

SEt PER-Process Memory-limit = (limit) queue
Set a per-process maximum memory size limit for a batch queue against which the per-
process maximum memory size limit for a request may be compared. If the local host
does not support per-process memory size limits, then this command will report an error.
Otherwise, every batch queue on the local host will have a per-process maximum memory
size limit associated with i t at all times. If a request already in the queue has asked for
more than the new limit, then i t will be given a grandfather clause. A request specifying
a per-process maximum memory size limit may only enter a batch queue if the queue’s
limit is greater than or equal to the request’s limit. For the syntax of l imit , see the
LIMITS section below.

Full NQS manager privileges are required to use this command.

SEt PERProcess Permfile-limit = (limit) queue
Set a per-process maximum permanent file size limit for a batch queue against which the
per-process maximum permanent file size limit for a request may be compared. If the
local host does not support per-process permanent file size limits, then this command will
report an error. Otherwise, every batch queue on the local host will have a per-process
maximum permanent file size limit associated with it at all times. If a request already in
the queue has asked for more than the new limit, then it will be given a grandfather
clause. A request specifying a per-process maximum permanent file size limit may only
enter a batch queue if the queue’s limit is greater than or equal to the request’s limit.
For the syntax of l imit, see the LIMITS section below.

Full NQS manager privileges are required to use this command.

Page 11

I QMGR (1M)

l -

SEt PER-Process Tempfile-limit = (limit) queue
Set a per-process maximum temporary file siee limit for a batch queue against which the
per-process maximum temporary file siee limit for a request may be compared. If the
local host does not support per-process temporary file size limits, then this command will
report an error. Otherwise, every batch queue on the local host will have a per-process
maximum temporary file size limit associated with it at all times. If a request already in
the queue has asked for more than the new limit, then it will be given a grandfather
clause. A request specifying a per-process maximum temporary file size limit may only
enter a batch queue if the queue’s limit is greater than or equal to the request’s limit.
For the syntax of l imit , see the LIMITS section below.

Full NQS manager privileges are required to use this command.

SEt PER-Request Cpu-limit = (limit) queue
Set a per-request maximum CPU time limit for a batch queue against which the per-
request maximum CPU time limit for a request may be compared. If the local host does
not support per-request CPU time limits, then this command will report an error. Other-
wise, every batch queue on the local host will have a per-request maximum CPU time
limit associated with it at all times. If a request already in the queue has asked for more
than the new limit, then it will be given a grandfather clause. A request specifying a
per-request maximum CPU time limit may only enter a batch queue if the queue’s limit
is greater than or equal to the request’s limit. For the syntax of l imit , see the LIMITS
section below.

Full NQS manager privileges are required to use this command.

SEt PER-Request Memory-limit = (limit) queue
Set a per-request maximum memory siee limit for a batch queue against which the per-
request maximum memory siee limit for a request may be compared. If the local host
does not support per-request memory siee limits, then this command will report an error.
Otherwise, every batch queue on the local host will have a per-request maximum memory
size limit associated with it at all times. If a request already in the queue has asked for
more than the new limit, then it will be given a grandfather clause. A request specifying
a per-request maximum memory siee limit may only enter a batch queue if the queue’s
limit is greater than or equal to the request’s limit. For the syntax of limit, see the
LIMITS section below.

Full NQS manager privileges are required to use this command.

SEt PER-Request Permfile-limit = (limit) queue
Set a per-request maximum permanent file space limit for a batch queue against which
the per-request maximum permanent file space limit for a request may be compared. If
the local host does not support per-request permanent file space limits, then this com-
mand will report an error. Otherwise, every batch queue on the local host will have a
per-request maximum permanent file space limit associated with i t at all times. If a
request already in the queue has asked for more than the new limit, then it will be given
a grandfather clause. A request specifying a per-request maximum permanent file space
limit may only enter a batch queue if the queue’s limit is greater than or equal to the
request’s limit. For the syntax of l imit , see the LIMITS section below.

Full NQS manager privileges are required to use this command.

Page 12

QMGR(1M)

SEt PER-Request Tempfile-limit = (limit) queue
Set a per-request maximum temporary file space limit for a batch queue against which
the per-request maximum temporary file space limit for a request may be compared. If
the local host does not support per-request temporary file space limits, then this com-
mand will report an error. Otherwise, every batch queue on the local host will have a
per-request maximum temporary file space limit associated with it at all times. If a
request already in the queue has asked for more than the new limit, then it will be given
a grandfather clause. A request specifying a per-request maximum temporary file space
limit may only enter a batch queue if the queue’s limit is greater than or equal to the
request’s limit. For the syntax of limit, see the LIMITS section below.

Full NQS manager privileges are required to use this command.

SEt PIpe-client = (client) queue
Associate a pipe client with a pipe queue.
name to the program binary followed by any arguments required by the program.

Client should consist of the absolute path

Full NQS manager privileges are required to use this command.

SEt P R i o r i t y = priority queue
Specify the inter-queue priority of a queue.

Full NQS manager privileges are required to use this command.

SEt Run-limit = run-limit queue
Change the run-limit of an NQS batch or pipe queue. The run-limit determines the max-
imum number of requests that will be allowed to run in the queue at any given time.

NQS operator privileges are required to use this command.

SEt SHell-strategy FIxed = (shell)
Specify that shell should be used to execute all batch requests. Shell must be the abso-
lute path name of a command interpreter.

Full NQS manager privileges are required to use this command.

SEt SHell-strategy FRee
Specify that the free shell strategy should be used to execute all batch requests. The
free shell strategy aims at duplicating the shell choice that would have been made if the
batch request script had been executed interactively. Under this strategy, the user’s login
shell is allowed to determine the shell to be used to execute the batch request. The user’s
login shell is the shell named within the user’s entry in the password file (see pasawd(4)).

Full NQS manager privileges are required to use this command.

SEt SHell-strategy Login
Specify that the login shell strategy should be used to execute all batch requests. Under
the login shell strategy, the user’s login shell is used to execute the batch request. The
login shell is the shell named in the password file (see passwd(4)).

Full NQS manager privileges are required to use this command.

Page 13

QMGR(1M)

SEt STack-limit = (limit) queue
Set a per-process maximum stack segment size limit for a batch queue against which the
per-process maximum stack segment size limit for a request may be compared. If the
local host does not support per-process stack segment size limits, then this command will
report an error. Otherwise, every batch queue on the local host will have a per-process
maximum stack segment size limit associated with it at all times. If a request already in
the queue has asked for more than the new limit, then it will be given a grandfather
clause. A request specifying a per-process maximum stack segment size limit may only
enter a batch queue if the queue’s limit is greater than or equal to the request’s limit.
For the syntax of l imit, see the LIMITS section below.

Full NQS manager privileges are required to use this command.

SEt Unrestricted-access queue
Specify that no requests will be turned away from queue on the grounds of queue access
restrictions.

Full NQS manager privileges are required to use this command.

SEt Working-set-limit = (limit) queue
Set a per-process maximum working set size limit for a batch queue against which the
per-process maximum working set size limit for a request may be compared. If the local
host does not support per-process working set size limits, then this command will report
an error. Otherwise, every batch queue on the local host will have a per-process max-
imum working set size limit associated with it at all times. If a request already in the
queue has asked for more than the new limit, then i t will be given a grandfather clause.
A request specifying a per-process maximum working set size limit may only enter a
batch queue if the queue’s limit is greater than or equal to the request’s limit. For the
syntax of l imit, see the LIMITS section below.

Full NQS manager privileges are required to use this command.

SHOw All
Display the standard amount of information about dev ice8 , forma, limit8 supported,
managers, parameters, and queues. See below.

SHOw Device [deuice-name]
Display the status of all NQS devices on this host. If a device-name is specified, output
will be limited to that device.

SHOw Forms
Display the list of valid forms.

SHOw Limits-supported
Display the list of NQS resource limit types which are meaningful on this machine. If a
limit type is meaningful on a machine, then the corresponding qmgr(1M) commands will
allow the association of a limit of that type with any batch queue on that machine. Note
that users may request resource limits that are NOT meaningful on the machine where
qsub(1) is invoked. If the the request is to be executed on a remote machine where the
limit is meaningful, then NQS will honor it. Otherwise the unsupported limit is simply
ignored.

Page 14

QMGR(1M)

SHOw Long Queue [queue-name [user-name]]
Display in long format the status of all NQS queues on this host. If a queue-name is
specified, output will be limited to that queue. If a user-name is specified, output will
downplay any requests not belonging to that user.

SHOw Managers
Display the list of authorized NQS managers.

SHOw Parameters
Display the general NQS parameters.

SHOw Queue [queue-name [user-name]]
Display the status of all NQS queues on this host. If a queue-name is specified, output
will be limited to that queue. If a user-name is specified, output will downplay any
requests not belonging to that user.

SHUtdown [deconda]
Shutdown NQS on the local host. A SIGTERM signal is sent to each process of each
request presently running. After the specified number of seconds of real time have
elapsed, a SIGKILL signal is sent to all remaining processes for each request. If a seconds
value is not specified, then the delay is sixty seconds. Unlike ABort Queue, SHUt-
down requeues all of the requests it kills, provided that the initial SIGTERM signal is
caught or ignored by the running request.

NQS operator privileges are required to use this command.

STArt Queue queue
If the queue is already started, then nothing happens. Otherwise, the queue is started
and requests in the queue are eligible for selection.

NQS operator privileges are required to use this command.

STOP Queue queue
Any requests in the queue that are currently running are allowed to complete. All other
requests are "frozen" in the queue. New requests can still be submitted to the queue, but
will be "frozen" like the other requests in the queue.

NQS operator privileges are required to use this command.

Unlock Local-daemon
Remove a lock that has been keeping the NQS local daemon in memory. See plock(2).

NQS operator privileges are required to use this command.

QUEUE TYPES
NQS supports four different queue types, that serve to provide four very different functions.
These four queue types are known as batch, d e v i c e , pipe, and network.

The queue type of batch can only be used to execute NQS batch requeata. Only NQS batch
requeata created by the qsub(1) command can be placed in a batch queue.

Page 15

QMGR(1M)

The queue type of device can only be used to execute NQS device requests. Only NQS device
requests created by the qpr(1) command can be placed in a device queue.

Queues of type: pipe, are used to send NQS requests to other pipe queues, or to request destina-
tion queues of type batch or device, as appropriate for the request type. In general, pipe queues
in combination with network queues, act as the mechanism that NQS uses to to transport both
batch and device requests to distant queues on other remote machines. It is also perfectly legal
for a pipe queue to transport requests to queues on the same machine.

When a pipe queue is defined, i t is given a deatination aet, which defines the set of possible desti-
nation queues for requests entered in that pipe queue. In this manner, i t is possible for a batch or
device request to pass through many pipe queues on its way to its ultimate destination, which
must eventually be a queue of type batch or device (matching the request type).

Each pipe queue has an associated server. For each request handled by a pipe queue, the associ-
ated server is spawned which must select a queue destination for the request being handled, based
on the characteristics of the request, and upon the characteristics of each queue in the destination
set defined for the pipe queue.

Since a different server can be configured for each pipe queue, and batch and device queues can be
endowed with the pipeonly attribute that will only admit requests queued via another pipe queue,
it is possible for respective NQS installations to use pipe queues as a request class mechanism,
placing requests that ask for different resource allocations in different queues, each of which can
have different associated limits and priorities.

It is also completely possible for a pipe client (pipe queue server) when handling a request, to dis-
cover that no destination queue will accept the request, for various reasons which can include
insufficient resource limits to execute the request, or a lack of a corresponding account or privilege
for queueing at a remote queue. In such circumstances, the request will be deleted, and the user
will be notified by mail (see mail(1)).

The queue type of network as alluded to earlier, is implicitly used by pipe queues to pass NQS
requests between machines, and is also used to handle queued file transfer operations.

QUEUE ACCESS
NQS supports queue access restrictions. For each queue of queue type other than network, access
may be either unrestricted or restricted. If access is unrestricted, any request may enter the
queue. If access is restricted, a request can only enter the queue if the requester or the requester's
login group has been given access. Requests submitted by root are an exception; they are always
queued, even if root has not explicitly been given access.

LIMITS
NQS supports many batch request resource limit types that can be applied to an NQS batch
queue. The configurability of these limits allows an NQS manager to set batch queue-specific
resource limits which all batch requests in the queue must adhere to.

The syntax of a limit in commands of the form SEt Some-limit = (limit) queue is quite
flexible.

For finite CPU time limits, the acceptable syntax is as follows:

[[hours :] minutes :] seconds [.milliseconds]

Page 16

QMGR(1M)

Whitespace can appear anywhere between the principal tokens, with the exception that no whi-
tespace can appear around the decimal point.

Example time limit-valuca are:

'1234 : 58 : 21.29
12345 - 12345 seconds
121.1 - 121.100 seconds
59:Ol

- 1234 hrs 58 mins 21.290 secs

- 59 minutes and 1 second

For all other finite limits (with the excIusion of the nice-value), the acceptable syntax is:

.fraction [units]

or

integer [.fraction] [units]

where the integer and fraction tokens represent strings of up to eight decimal digits, denoting the
obvious values. In both cases, the units of allocation may also be specified as one of the case
insensitive strings:

b

kb
kw
mb
mw
gb
gw

W

- bytes
- words
- kilobytes (2^10 bytes)
- kilowords (2-10 words)
- megabytes (2-20 bytes)
- megawords (2^20 words)
- gigabytes (2-30 bytes)
- gigawords (2-30 words)

In the absence of any units specification, the units of byte3 are assumed.

For all limit types with the exception of the nice-ualue, it is possible to state that no limit should
be applied. This is done by specifying a limit of "unlimited", or any initial substring thereof.

The complications caused by batch request resource limits first show up when queueing a batch
request in a batch queue. This operation is described in the following paragraphs.

If a batch request specifies a limit that cannot be enforced by the underlying UNIX implementa-
tion, then the limit is simply ignored, and the batch request will operate as though there were no
limit (other than the obvious physical maximums), placed upon that resource type. (See the
qlimit(1) command to find out what limits are supported by a given machine.)

For each remaining finite limit that can be supported by the underlying UNIX implementation
that is not a CPU time-limit, or UNIX nice-value, the limit-value is internally converted to the
units of bytes or words, whichever is more appropriate for the underlying machine architecture.

As an example, a per-process memory size limit value of 321 megabytes would be interpreted as
321 x 2^20 bytes, provided that the underlying machine architecture was capable of directly
addressing single bytes. Thus the original limit coeficient of 321 would become 321 x 2-20. On
a machine that was only capable of addressing words, the appropriate conversion of 321 x 2*20

Page 17

QMGR (1M)

bytes / #of-bytes-per-word would be performed.

If the result of such a conversion would cause overflow when the coefficient was represented as a
signed-long integer on the supporting hardware, then the coefficient is replaced with the
coefficient of: of 2-N-1 where N is equal to the number of bits of precision in a signed long
integer. For typical 32-bit machines, this default eztrem.e limit would therefore be 2-91-1 bytes.
For word addressable machines in the supercomputer class supporting 64-bit long integers, the
default eztreme limit would be 2-68-1 words.

Lastly, some implementations of UNIX reserve coefficients of the form: 2-N-1 as synonomous with
infinity, meaning no limit is to be applied. For such UNIX implementations, NQS further decre-
ments the default eztreme limit so as to not imply infinity.

The identical internal conversion process as described in the preceding paragraphs is also per-
formed for all finite limit-values specified with a particular batch request.

After each applicable request limit has been converted as described above, the resulting limit is
then compared against the corresponding limit as configured for the destination batch queue. If
the corresponding batch queue limit for all batch request limits is defined as unlimited, or is
greater than or equal to the corresponding batch request l imit , then the request can be success-
fully queued, provided that no other anomalous conditions occur. For requests that ask for a
limit of infinity, the corresponding queue limit must also be configured as infinity.

These resource limit checks are performed irrespective of the batch request arrival mechanism,
either by a direct use of the qsub(1) command, or by the indirect placement of a batch request
into a batch queue via a pipe queue. It is impossible for a batch request to be queued in an NQS
batch queue if any of these resource limit checks fail.

Finally, if a request fails to specify a limit for a resource limit type that is supported on the exe-
cution machine, then the corresponding limit as configured for the destination queue becomes the
limit for the request.

Upon the successful queueing of a request in a batch queue, the set of limits under which the
request will execute is frozen, and will not be modified by subsequent qmgr(1M) commands that
alter the limits of the containing batch queue.

SEE ALSO
passwd(4), plock(2), qdel(l), qdev(l), qlimit(l), qpr(l), qstat(l), and qsub(1)
in the NPSN UNZX User Reference Manual.

NPSN HISTORY
Origin: Sterling Software Incorporated

August 1985 - Brent Kingsbury, Sterling Software
Original release.

May 1986
Second release.

Page 18

NAME
qpr - submit a hardcopy print request to NQS

qpr [-a date-time 1 [-f form-name] [-mb] [-me]
[-mu user-name] [-n number-of-copies] [-p priority]
1-9 queue-name J [-r request-name] [-a] [files]

Qpr places the named files in a Network Queueing Syatem (NQS) queue to be printed by a device
such as a line printer or laser printer. If no files are specified, qpr will read from the standard
input.

In the absence of the - a flag, qpr will print a request-id on the standard output, upon successful
queueing of a request. This requeat-id can be compared with what is reported by qdeu(1) and
qstat(1) to find out what happened to a request, and given as an argument to qdcl(1) to delete a
request. A request-id is always of the form: seqno.hostname where aeqno refers to the sequence
number assigned to the request by NQS, and hoatname refers to the name of originating local
machine. This identifier is used throughout NQS to uniquely identify the request, no matter
where i t is in the network.

The following options to qpr may appear in any order and may be intermixed with file names.

-a date-time

SYNOPSIS
I

DESCRIPTION

I

Submit at the specified date and/or time. In the absence of this flag, qpr will submit
the request immediately.

If a date-time specification is comprised of two or more tokens separated by whi-
tespace characters, then the date-time specification must be placed within double
quotes as in: -a "July, 4, 2026 12:$1-EDT', or otherwise escaped such that the shell
will interpret the entire date-time specification as a single lexical token.

The syntax accepted for the date-time parameter is relatively flexible. Unspecified
date and time values default to an appropriate value (e.g. if no date is specified,
then the current month, day, and year are assumed).

A date can be specified as a month and day (current year assumed). The year can
also be explicitly specified. It is also possible to specify the date aa a weekday name
(e.g. "Tues"), or as one of the strings "today" or "tomorrow". Weekday names and
month names can be abbreviated by any three character (or longer) prefix of the
actual name. An optional period can follow an abbreviated month or day name.

Time of day specifications can be given using a twenty-four hour clock, or "am" and
npmfl specifications may be used alternatively. In the absence of a meridian
specification, a twenty-four hour clock is assumed.

It should be noted that the time of day specification is interpreted using the precise
meridian definitions whereby "12am" refers to the twenty-four hour clock time of
O:OO:OO, "12m" refers to noon, and II12-pm" refers to 24:OO:OO. Alternatively, the
phrases "midnight" and llnoon" are accepted as time of day specifications, where
"midnight" refers to the time of 24:OO:OO.

A timezone may also appear at any point in the date-time specification. Thus, it is
legal to say: "April 1, 1987 13:Ol-PDT". In the absence of a timezone specification,
the local timezone is assumed, with daylight savings time being inferred when
appropriate, based on the date specified.

All alphabetic comparisons are performed in a case insensitive fashion such that both
"WeD" and "weD" refer to the day of Wednesday.

Page 1

Some valid date-time examples are:

01-Jan-1986 12am, PDT
Tuesday, 23:OO:OO
l l p m tues.
tomorrow 23-MST

-f form-name
Limit the set of acceptable devices to those devices which are loaded with the forms:
form-name. In the absence of this flag, qpr will submit the request only to a device
that is loaded with the default forms. If there is no default forms defined, the
request will be submitted to the appropriate output device without regard to the
forms configured for the device.

In any case, only those devices associated with the chosen queue will be considered.

Send mail to the user on the originating machine when the request begins execution.
If the -mu flag is also present, then mail is sent to the user specified for the -mu
flag instead of to the invoking user.

Send mail to the invoker on the originating machine when the request has ended exe-
cution. If the -mu flag is also present, then mail is sent to the user specified for the
-mu flag instead of to the invoking user.

Specify that any mail concerning the request should be delivered to the user user-
name. User-name may be formatted either as user (containing no ‘@’ characters), or
as user@machine. In the absence of this flag, any mail concerning the request will
be sent to the invoker on the originating machine.

-mb

-me

-mu user-name

-n number-of-copies

-p priority

Print number-of-copies copies. The default is one.

Assign an intra-queue priority to this request. The specified priority must be an
integer, and must be in the range [0..63], inclusive. A value of 63 defines the highest
intra-queue request priority, while a value of 0 defines the lowest. This priority does
not determine the execution priority of the request. This priority is only used to
determine the relative ordering of requests within a queue.

When a request is added to a queue, i t is placed at a specific position within the
queue such that i t appears ahead of all existing requests whose priority is less than
the priority of the new request. Similarly, all requests with a higher priority will
remain ahead of the new request when the queueing process is complete. When the
priority of the new request is equal to the priority of an existing request, the existing
request takes precedence over the new request.

If no intra-queue priority is chosen by the user, then NQS assigns a default value.

Specify the queue to which the device request is to be submitted. If no -q queue-
name specification is given, then the user’s environment variable set is searched for
the variable: QPR-QUEUE. If this environment variable is found, then the charac-
ter string value for QPR-QUEUE is presumed to name the queue to which the
request should be submitted. If the QPR-QUEUE environment variable is not
found, then the request will be submitted to the default device request queue, if
defined by the local system administrator. Otherwise, the request cannot be queued,
and an appropriate error message is displayed to this effect.

-q queue-name

Page 2

-r request-name
Assign a name to this request. In the absence of an explict --c request-name
specification, the request-name defaults to the name of the first print file (leading
path name removed) specified on the command line. If no print files were specified,
then the default request-name assigned to the request is STDIN.
In all cases, if the request-name is found to begin with a digit, then the character ’R’
is pre-pended to prevent a requeat-name from beginning with a digit. All request-
names are truncated to a maximum length of 15 characters.

Be sure not to confuse request-name with request-id.

Submit the request silently. If the request is submitted successfully, nothing will be
written to stdout or stderr.

-5

QUEUE ACCESS
NQS supports queue access restrictions. For each queue of queue type other than network, access
may be either unrestricted or restricted. If access is unredricted, any request may enter the
queue. If access is restricted, a request can only enter the queue if the requester or the requester’s
login group has been given access to that queue (see qmgr(1M)). Requests submitted by root are
an exception; they are always queued, even if root has not explicitly been given access.

Use qstat(1) to determine who has access to a particular queue.

mail(l), qdel(l), qdev(l), qlirnit(l), qstat(l), and qsub(1)
in the NPSN UNIX System Programmer Reference Manual.
qmgr(1M) in the NPSN UNIX System Administrator Reference Manual.

Origin: Sterling Software Incorporated

May 1986 - Robert Sandstrom, Sterling Software
Original release.

I

SEE A L S O

NPSN HISTORY

I Page 3

QSTAT(1)

NAME
qstat - display status of NQS queue(s)

qstat [-a] [-I] [-m] [-u user-name] [-XI
[queue-name ...] [queue-nameQhost-name ...]

Qatat displays the status of Network Queueing System (NQS) queues.

If no queues are specified, then the current state of each NQS queue on the local host is displayed.
Otherwise, information is displayed for the specified queues only. Queues may be specified either
as queue-name or queue-name@host-name. In the absence of a host-name specifier, the local host
is assumed.

For each selected queue, qstat displays a queue header (information about the queue itself) fol-
lowed by information about requests in the queue. Ordinarily, qstat shows only those requests
belonging to the invoker. The following flags are available:

-a Shows all requests.

- I
-m

-u user-name

SYNOPSIS

DESCRIPTION

Requests are shown in a long format.

Requests are shown in a medium-length format.

Shows only those requests belonging to user-name .
The queue header is shown in an extended format. -X

The queue header always includes the queue-name, queue type, queue status (see below), an indi-
cation of whether or not the queue is pipeonly (accepts requests from pipe queues only), and the
number of requests in the queue. An extended queue header goes on to display the priority and
run limit of a queue, as well as the access restrictions, cumulative use statistics, server and desti-
nations (if a pipe queue), queue to device mappings (if a device queue), and resource limits (if a
batch queue).

By default, qstat displays the following information about a request: the request-name, the
request-id, the owner, the relative request priority, and the current request state (see below). For
running requests, the process group is also shown, as soon as this information becomes available
to the local NQS daemon.
Qstat -m shows the following additional information: If the request was submitted with the con-
straint that i t not run before a certain time and date, then the constraining time and date will
also be displayed.

Qstat -1 shows the time at which the request was created, an indication of whether or not mail
will be sent, where mail will be sent, and the username on the originating machine. If a batch
queue is being examined, resource limits, planned disposition of stderr and stdout, any advice
concerning the command interpreter, and the umask value are shown. If a device queue is being
examined, the requested forms are shown.

It must be understood that the relative ordering of requests within a queue does not always deter-
mine the order in which the requests will be run. The NQS request scheduler is allowed to make
exceptions to the request ordering for the sake of efficient machine resource usage. However,
requests appearing near the beginning of the queue have higher priority than requests appearing
later, and will usually be run before requests appearing later on in the queue.

The general state of a queue is defined by two principal properties of the queue.
QUEUE STATE

Page 1

QSTAT(1)

The first property determines whether or not requests can be submitted to the queue. If they can,
then the queue is said to be enabled. Otherwise the queue is said to be disabled. One of the
words CLOSED, ENABLED, or DISABLED will appear in the queue status field to indicate the
respective queue states of: enabled (with no local NQS daemon), enabled (and local NQS daemon
is present), and disabled. Requests can only be submitted to the queue if the queue is enabled,
and the local NQS daemon is present.

The second principal property of a queue determines if requests which are ready to run, but are
not now presently running, will be allowed to run upon the completion of any currently running
requests, and whether any requests are presently running in the queue.

If queued requests not already running are blocked from running, and no requests are presently
executing in the queue, then the queue is said to be stopped. If the same situation exists with the
difference that at least one request is running, then the queue is said to be stopping, where the
requests presently executing will be allowed to complete execution, but no new requests will be
spawned.

If queued requests ready to run are only prevented from doing so by the NQS request scheduler,
and one or more requests are presently running in the queue, then the queue is said to be run-
ning. If the same circumstances prevail with the exception that no requests are presently running
in the queue, then the queue is said to be inactive. Finally, if the NQS daemon for the local host
upon which the queue resides is not running, but the queue would otherwise be in the state of
running or inactive, then the queue is said to be shutdown. The queue states describing the
second principal property of a queue are therefore respectively displayed as STOPPED, STOP-
PING, RUNNING, INACTIVE, and SHUTDOWN.

The state of a request may be arriving, holding, waiting, queued, staging, routing, running,
departing, or exiting. A request is said to be arriving if it is being enqueued from a remote host.
Holding indicates that the request is presently prevented from entering any other state (including
the running state), because a hold has been placed on the request. A request is said to be waiting
if it was submitted with the constraint that i t not run before a certain date and time, and that
date and time have not yet arrived. Queued requests are eligible to proceed (by routing or run-
ning). When a request reaches the head of a pipe queue and receives service there, it is routing.
A request is departing from the time the pipe queue turns to other work until the request has
arrived intact at its destination. Staging denotes a batch request that has not yet begun execu-
tion, but for which input files are being brought on to the execution machine. A running request
has reached its final destination queue, and is actually executing. Finally, exiting describes a
batch request that has completed execution, and will exit from the system after the required out-
put files have been returned (to possibly remote machines).

Imagine a batch request originating on a workstation, destined for the batch queue of a computa-
tion engine, to be run immediately. That request would first go through the states queued, rout-
ing, and departing in a local pipe queue. Then i t would disappear from the pipe queue. From
the point of view of a queue on the computation engine, the request would first be arriving, then
queued, staging (if required by the batch request), running, and finally eziting. Upon compietion
of the exiting phase of execution, the batch request would disappear from the batch queue.

NQS is not finished, and continues to undergo development. Some of the request states shown
above may or may not be supported in your version of NQS.

qdel(l), qdev(l), qlimit(l), qpr(l), and qsub(1)
in the NPSN UNIX System Programmer Reference Manual.
qmgr(1M) in the NPSN UNIX System Administrator Reference Manual.

REQUEST STATE

CAVEATS

SEE ALSO

Page 2

NAME
qsub - submit an NQS batch request.

qsub [flags] [script-file]

&sub submits a batch request to the Network

SYNOPSIS

DESCRIPTION
Queueing System (NQS).

If no script-file is specified, then the set of commands to be executed as a batch request is taken
directly from the standard input file (s tdin) . In all cases however, the script fire is spooled, so
that later changes will not affect previously queued batch requests.

All of the flags that can be specified on the command line can also be specified within the first
comment block inside the batch request script file as embedded default flags. Such flags appear-
ing in the batch request script fire set default characteristics for the batch request. If the same
flag is specified on the command line, then the command line flag (and any associated value) takes
precedence over the embedded flag. See the section entitled: LONG DESCRIPTION for more
information on embedded default flags.

What follows is a terse definition of the flags implemented by the & a d command (see the section:
LONG DESCRIPTION for the complete definition and syntax used for each of these flags).

--a - run request after stated time
-e - direct stderr output to stated destination
-eo - direct stderr output to the stdout destination
-ke - keep stderr output on the execution machine
-ko - keep stdout output on the execution machine
--IC - establish per-process corefile size limit
--Id - establish per-process data-segment size limits
-If - establish per-process permanent-file size limits
-IF - establish per-request permanent-file space limits
-lm - establish per-process memory size limits
-lM - establish per-request memory space limits
--In - establish per-process nice execution value limit
-Is - establish per-process stack-segment size limits
-It - establish per-process CPU time limits
-IT - establish per-request CPU time limits
-lv - establish per-process temporary-file size limits
-1V - establish per-request temporary-file space limits
-lw - establish per-process working. set limit
- m b - send mail when the request begins execution
- m e - send mail when the request ends execution
-mu - send mail for the request to the stated user
-nr - declare that batch request is not restartable
-0 - direct stdout output to the stated destination
-p - specify intra-queue request priority
-q - queue request in the stated queue
-r - assign stated request name to the request
-re - remotely access the stderr output file
-ro - remotely access the stdout output file
-a - specify shell to interpret the batch request script
-x - export all environment variables with request
-E - submit the request silently

Page 1

LONG DESCRIPTION
As described above, it is possible to specify default flags within the batch request script file that
configure the default behavior of the batch request. The algorithm used to scan for such embed-
ded default flags within an NQS batch request script file is as follows:

1.

2.

Read the first line of the script f i le.

If the current line contains only whitespace characters, or the first non-whitespace
character of the line is " : I 1 , then goto step 7.

If the first non-whitespace character of the current line is not a "#" character, then
goto step 8. .

If the second non-whitespace character in the current line is not the "@" character,
or the character immediately following the second non-whitespace character in the
current line is not a "$", then goto step 7.
If no Ic-" is present as the character immediately following the "@$" sequence, then
goto step 8.

Process the embedded flag, stopping the parsing process upon reaching the end of
the line, or upon reaching the first unquoted "#" character.

3.

4.

5.

6.

7. Read the next script file line. Goto step 2.

8. End. No more embedded flags will be recognized.

Here is an example of the use of embedded flags within the script f i l e .

Batch request script example:

Q$-a 1111:30pm EDT" -It "21:10, 2O:OO"

of one hour, and 45 minutes. (The

machine.)
Q$-mb -me # Send mail a t beginning and end of
request execution.
Q$-q batchl # Queue request to queue: batchl by
default.
Q$ # No more embedded flags.

make all

Run request after 11:30 EDT by default,
and set a maximum per-process CPU time
limit of 21 minutes and ten seconds.
Send a warning signal when any process
of the running batch request consumes
more than 20 minutes of CPU time.

Set a maximum per-request CPU time limit

implementation of CPU time limits is
completely dependent upon the UNIX
implementation at the execution

Q$-1T 1:45:00

The following paragraphs give the detailed descriptions of the flags supported by the &sub com-
mand.

Page 2

:

-a date-time
Do not run the batch request before the specified date and/or time. If a date-time
specification is comprised of two or more tokens separated by whitespace characters,
then the date-time specification must be placed within double quotes as in: -a
"July, 4, 2026 12:8l-EDT", or otherwise escaped such that Qsub and the shell will
interpret the entire date-time specification as a single character string. This restric-
tion also applies when an embedded default -a flag with accompanying date-time
specification appears within the batch request script f i le.

The syntax accepted for the date-time parameter is relatively flexible. Unspecified
date and time values default to an appropriate value (e.g. if no date is specified,
then the current month, day, and year are assumed).

A date may be specified as a month and day (current year assumed), or the year
can also be explicitly specified. It is also possible to specify the date as a weekday
name (e.g. "Tues"), or as one of the strings: I1today", or "tomorrow". Weekday
names and month names can be abbreviated by any three character (or longer)
prefix of the actual name. An optional period can follow an abbreviated month or
day name.

Time of day specifications can be given using a twenty-four hour clock, or (lam"
and "pm" specifications may be used alternatively. In the absence of a meridian
specification, a twenty-four hour clock is assumed.

It should be noted that the time of day specification is interpreted using the precise
meridian definitions whereby "12am" refers to the twenty-four hour clock time of
O:OO:OO, "12m" refers to noon, and "l2-pmtt refers to 24:OO:OO. Alternatively, the
phrases "midnight" and "noontt are accepted as time of day specifications, where
"midnight" refers to the time of 24:OO:OO.

A timeeone may also appear a t any point in the date-time specification. Thus, it is
legal to say: "April 1, 1987 13:Ol-PDT". In the absence of a timezone specification,
the local timeeone is assumed, with daylight savings time being inferred when
appropriate, based on the date specified.

All alphabetic comparisons are performed in a case insensitive fashion such that
both "WeD" and "weD" refer to the day of Wednesday.
Some valid date-time examples are:

01-Jan-1986 12am, PDT
Tuesday, 23:OO:OO
l l p m tues.
tomorrow 23-MST

-e [machine:][[/]path/] stderr- filename
Direct output generated by the batch request which is sent to the stderr file to the
named [machine:][[/]path/] stde rr-file name .
The 'brackets "[" and "1" enclose optional portions of the stderr destination
machine, path, and stderr-filename.

If no explicit machine destination is specified, then the destination machine defaults
to the machine that originated the batch request, or to the machine that will even-
tually run the request, depending on the respective absence, or presence of the -ke
flag.

If no machine destination is specified, and the path/filename does not begin with a
"/", then the current working directory is prepended to create a fully qualified path

Page 3

-eo

-ke

-ko

name, provided that the -ke (keep stderr) flag is also absent. In all other cases,
any partial path/filename is interpreted relative to the user's home directory on the
stderr destination machine.

This flag cannot be specified when the -eo flag option is also present.

If the -eo and -e [machine:][[/]path/] stderr-filename flag options are not present,
then all stderr output for the batch request is sent to the file whose name consists of
the first seven characters of the request-name followed by the characters: ".e", fol-
lowed by the request sequence number portion of the request-id discussed below. In
the absence of the -ke flag, this default stderr output file will be placed on the
machine that originated the batch request in the current working directory, as
defined when the batch request was first submitted. Otherwise, the file will be
placed in the user's home directory on the execution machine.

Direct all output that would normally be sent to the stderr file to the stdout file for
the batch request. This flag cannot be specified when the -e [machinc:][[/]path/]
stderr-filename flag option is also present.

In the absence of an explicit machine destination for the atderr file produced by a
batch request, the machine destination chosen for the stderr output file is the
machine that originated the batch request. In some cases however, this behavior
may be undesirable, and so the -ke flag can be specified which instructs NQS to
leave any stderr output file produced by the request on the machine that actually
ezecuted the batch request.

This flag is meaningless if the -eo flag is specified, and cannot be specified if an
explicit machine destination is given for the stderr parameter of the -e flag.

In the absence of an explicit machine destination for the stdout file produced by a
batch request, the machine destination chosen for the stdout output file is the
machine that originated the batch request. In some cases however, this behavior
may be undesirable, and so the -ko flag can be specified which instructs NQS to
leave any stdout output file produced by the request on the machine that actually
ezecuted the batch request.

This flag cannot be specified if an explicit machine destination is given for the
stdout parameter of the -0 flag.

-IC per-process corefile size limit
Set a per-process maximum core f i le size limit for all processes that constitute the
running batch request. If any process comprising the running request attempts to
exit creating a core file whose size would exceed the maximum per-process core f i le
size limit for the request, then the core file image of the aborting process will be
reduced to the necessary size by an algorithm dependent upon the underlying UNIX
implementation.

Not all UNIX implementations support per-process corefile size l imits. If a batch
request specifies this limit, and the machine upon which the batch request is eventu-
ally run does not support the enforcement of this limit, then the limit is simply
ignored.

See the section entitled LIMITS for more information on the implementation of
batch request limits, and for a description of the precise syntax of a per-process
corefile size l imit .

Set a per-process maximum and an optional warning data-segment size limit for all
processes that constitute the running batch request. If any process comprising the

-Id per-process data-segment size limit [, warn-limit]

Page 4

- .

running request exceeds the maximum per-process data-segment size-limit for the
request, then that process is terminated by a signal chosen by the underlying UNM
implementation.

The ability to specify an optional warning limit exists for those UNM operating sys-
tems that support per-process data-segment warning size limits. When a warning
limit is exceeded, a signal as determined by the underlying UNM implementation is
delivered to the offending process.

If a maximum limit (and optional warning limit) specification is comprised of two
or more tokens separated by whitespace characters, then the specification must be
enclosed within double quotes, or otherwise escaped such that &sub and the shell
will interpret the entire specification as a single character string token. This caveat
also applies when an embedded default -Id flag with its associated limit value(s)
appears within the batch request script file.

Not all U r n implementations support per-process data-segment size limits. If a
batch request specifies this limit, and the machine upon which the batch request is
eventually run does not support the enforcement of this limit, then the limit is sim-
ply ignored.

See the section entitled LIMITS for more information on the implementation of
batch request limits, and for a description of the precise syntax of a per-process
data-segment size limit.

Set a per-process maximum and an optional warning permanent-file size limit for
all processes that constitute the running batch request. If any process comprising
the running request attempts to write to a permanent file such that the file size
would increase beyond the maximum per-process permanent-file size limit for the
request, then that process is terminated by a signal chosen by the underlying UNIX
implementation.

The ability to specify an optional warning limit exists for those UNIX operating sys-
tems that support per-process warning permanent-file size limits. When a warning
limit is exceeded, a signal as determined by the underlying UNIX implementation is
delivered to the offending process.

If a maximum limit (and optional warning limit) specification is comprised of two
or more tokens separated by whitespace characters, then the specification must be
enclosed within double quotes, or otherwise escaped such that Qsub and the shell
will interpret the entire specification as a single character string token. This caveat
also applies when an embedded default -If flag with its associated limit value(s)
appears within the batch request script file.

Not all UNIX implementations support per-process permanent-file size limita. If a
batch request specifies this limit, and the machine upon which the batch request is
eventually run does not support the enforcement of this limit, then the limit is sim-
ply ignored.

At the time of this writing, the author was unaware of any UNIX implementation
that made a distinction at the kernel level, between permanent, and temporary
files. While it is certainly possible to construct a pseudo-temporary file by first
creating it, and then unlinking its pathname, the disk space allocated for such a file
will be allocated from the same pool of disk space that all other UNIX files are allo-
cated from. Furthermore, such a file will be subject to the same quota enforcement
mechanisms, if any are provided by the underlying UNIX implementation, that all
other UNIX files are created under.

'

-If per-process permanent-file size limit [, warn-limit]

Page 5

For all UNIX implementations that do not support a distinction between per-
manent, and temporary files a t the kernel level, this limit is interpreted as a per-
process file size l imit , with the word permanent removed from the definition.

See the section entitled LIMITS for more information on the implementation of
batch request limits, and for a description of the precise syntax of a per-process
permanent-file size l imit .

Set a per-request maximum and an optional warning cumulative petmanent-file
space limit for all processes that constitute the running batch request. If any pro-
cess comprising the running request attempts to write to a permanent file such that
the file space consumed by all permanent files opened for writing by all of the
processes in the batch request, would increase beyond the maximum per-request
permanent-file space limit for the request, then all of the processes in the request
will be terminated by a signal chosen by the underlying UNIX implementation.

The ability to specify an optional warning limit exists for those UNIX operating sys-
tems that support per-request warning permanent-file space l imits. When such a
.warning limit is exceeded, a signal is delivered to one or more of the processes
comprising the running request, depending upon the underlying UNIX implementa-
tion.

If a maximum limit (and optional warning limit) specification is comprised of two
or more tokens separated by whitespace characters, then the specification must be
enclosed within double quotes, or otherwise escaped such that Qsub and the shell
will interpret the entire specification as a single character string token. This caveat
also applies when an embedded default -IF flag with its associated limit value(s)
appears within the batch request script f i l e -

Not all UNIX implementations support per-request permanent-file space l imits. If a
batch request specifies this limit, and the machine upon which the batch request is
eventually run does not support the enforcement of this limit, then the limit is sim-
ply ignored.

At the time of this writing, the author was unaware of any UNIX implementation
that made a distinction at the kernel level, between permanent, and temporary
files. While i t is certainly possible to construct a pseudo-temporary file by first
creating it, and then unlinking its pathname, the disk space allocated for such a file
will be allocated from the same pool of disk space that all other UNLX files are allo-
cated from. Furthermore, such a file will be subject to the same quota enforcement
mechanisms, if any are provided by the underlying UNIX implementation, that all
other UNIX files are created under.

For all UNIX implementations that do not support a distinction between per-
manent, and temporary files at the kernel level, this limit is interpreted as a per-
request fi le space l imit , with the word permanent removed from the definition.

See the section entitled LIMITS for more information on the implementation of
batch request limits, and for a description of the precise syntax of a per-request
permanent-file space l imit .

Set a per-process maximum and an optional warning memory size limit for all
processes that constitute the running batch request. If any process comprising the
running request exceeds the maximum per-process memory size limit for the
request, then that process is terminated by a signal chosen by the underlying UNIX
implementation.

-IF per-request permanent-file space limit [, warn-limit]

-Im per-process memory size limit [, wa-rn-limit]

Page 6

The ability to specify an optional warning limit exists for those UNM operating sys-
tems that support per-process w a r n i n g m e m o r y size l i m i t s . When a warning limit
is exceeded, a signal as determined by the underlying UNM implementation is
delivered to the offending process.

If a maximum limit (and optional warning limit) specification is comprised of two
or more tokens separated by whitespace characters, then the specification must be
enclosed within double quotes, or otherwise escaped such that Qsub and the shell

' will interpret the entire specification as a single character string token. This caveat
also applies when an embedded default -lm flag with its associated limit value(s)
appears within the batch request scr ipt file.

Not all UNIX implementations support per-process m e m o r y size l i m i t s . If a batch
request specifies this limit, and the machine upon which the batch request is eventu-
ally run does not support the enforcement of this limit, then the limit is simply
ignored.

See the section entitled LIMITS for more information on the implementation of
batch request limits, and for a description of the precise syntax of a p e r - p r o c e s ~
m e m o r y size limit.

Set a per-request maximum and an optional warning cumulative m e m o r y space
l i m i t for all processes that constitute the running batch request. If the sum of all
memory consumed by all of the processes comprising the running request exceeds
the maximum per- request m e m o r y space l i m i t for the request, then all of the
processes in the request will be terminated by a signal chosen by the underlying
UMX implementation.

The ability to specify an optional warning limit exists for those UNM operating sys-
tems that support per-request w a r n i n g m e m o r y size l i m i t s . When such a warning
limit is exceeded, a signal is delivered to one or more of the processes comprising
the running request, depending upon the underlying UNIX implementation.

If a maximum limit (and optional warning limit) specification is comprised of two
or more tokens separated by whitespace characters, then the specification must be
enclosed within double quotes, or otherwise escaped such that &sub and the shell
will interpret the entire specification as a single character string token. This caveat
also applies when an embedded default -1M flag with its associated limit value(s)
appears within the batch request scr ipt fi le.

Not all UNIX implementations support per-request m e m o r y space l i m i t s . If a batch
request specifies this limit, and the machine upon which the batch request is eventu-
ally run does not support the enforcement of this limit, then the limit is simply
ignored.

See the section entitled LIMITS for more information on the implementation of
batch request limits, and for a description of the precise syntax of a per- request
m e m o r y space limit.

-IM per- request m e m o r y space limit [, w a r n - l i m i t]

-In per-process n ice value l i m i t
Set a per-process n ice value for all processes comprising the running batch request.

At present, all UNIX implementations support the use of an integer called the n i c e
value, which determines the ezecut ion- t ime priority of a process relative to all other
processes in the system. By letting the user set a limit on the n i c e value for all
processes comprising the running request, a user can cause a request to consume less
(or more) of the CPU resource presented by the execution machine. ,

Page 7

This is particularly useful when a user wishes to execute a CPU intensive batch
request on a machine running interactive processes. By setting a low ezecution-time
priority, a user can make a long running batch request give way .to more inieractive
processes during the daytime, while the coming of the nighttime hours with typi-
cally smaller process loads will allow such a request to gain more and more of the
CPU resource. In this way, long running batch requests can be polite to their more
transient, interactive neighbor processes.

The only quirk associated with this flag results from the peculiar choice of nice
values, implemented by the standard UNIX implementations. In general, increas-
ingly negative nice values cause the relative execution priority of a process t o
increase, while increasingly positive nice values causes the relative priority t o
decrease ! Thus, a nice value limit specification of: "-ln -10" is greedier than a nice
value limit specification of: "-ln On.

Since varying UNIX implementations often support a different finite range of nice
values, NQS allows the specification of nice values that can eventually turn out to
be outside the limits for the U N M implementation running at the ezecution
machine. In such cases, NQS will simply bind the specified nice value limit to
within the necessary range as appropriate.

Lastly, any nice value specified by the use of this flag must be acceptable to the
batch queue in which the request is ultimately placed (see the section entitled LIM-
ITS for more information).

-le per-process stack-segment size limit [, warn-limit]
Set a per-process maximum and an optional warning stack-segment size limit for all
processes that constitute the running batch request. If any process comprising the
running request exceeds the maximum per-process stack-segment size limit for the
request, then that process is terminated by a signal chosen by the underlying UNIX
implementation.

The ability to specify an optional warning limit exists for those UNIX operating sys-
tems that support per-process warning stack-segment size l imits. When a warning
limit is exceeded, a signal as determined by the underlying UNM implementation is
delivered to the offending process.

If a maximum limit (and optional warning limit) specification is comprised of two
or more tokens separated by whitespace characters, then the specification must be
enclosed within double quotes, or otherwise escaped such that &sub and the shell
will interpret the entire specification as a single character string token. This caveat
also applies when an embedded default -is flag with its associated limit value(s)
appears within the batch request script f i l e .

Not all UNIX implementations support per-process stack-segment size l imits. If a
batch request specifies this limit, and the machine upon which the batch request is
eventually run does not support the enforcement of this limit, then the limit is sim-
ply ignored.

See the section entitled LIMITS for more information on the implementation of
batch request limits, and for a description of the precise syntax of a per-process
stack-segment size l imit .

Set a per-pr0ce.u maximum and an optional warning CPU time limit for all
processes that constitute the running batch request. If any process comprising the
running request exceeds the maximum per-process CPU time limit for the request,
then that process is terminated by a signal chosen by the underlying UNIX

-it per-proceas CPU time limit [, warn-limit]

Page 8

implementation.

The ability to specify an optional warning limit exists for those UNM operating sys-
tems that support per-process CPU warning time limits. When a warning limit is
exceeded, a signal as determined by the underlying UNM implementation is
delivered to the offending process.

If a maximum limit (and optional warning limit) specification is comprised of two
or more tokens separated by whitespace characters, then the specification must be
enclosed within double quotes, or otherwise escaped such that Qaub and the shell
will interpret the entire specification as a single character string token. This caveat
also applies when an embedded default - I t flag with its associated limit value(s)
appears within the batch request script file.

Not all UNIX implementations support per-process CPU time limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventu-
ally run does not support the enforcement of this limit, then the limit is simply
ignored.

See the section entitled LIMITS for more information on the implementation of
batch request limits, and for a description of the precise syntax of a per-process
CPU time limit.

.

-1T per-request CPU time limit [, warn-limit]
Set a per-request maximum and an optional warning cumulative CPU time limit for
all of the processes that constitute the running batch request. If the sum of the
CPU times consumed by all of the processes in the batch request exceeds the max-
imum per-request CPU time limit for the request, then all of the processes in the
request will be terminated by a signal chosen by the underlying UNM implementa-
tion.

The ability to specify an optional warning limit exists for those UNM operating sys-
tems that support per-request CPU warning time limits. When such a warning limit
is exceeded, a signal is delivered to one or more of the processes comprising the run-
ning request, depending upon the underlying UNM implementation.

If a maximum limit (and optional warning limit) specification is comprised of two
or more tokens separated by whitespace characters, then the specification must be
enclosed within double quotes, or otherwise escaped such that &sub and the shell
will interpret the entire specification as a single character string token. This caveat
also applies when an embedded default -IT flag with its associated limit value(s)
appears within the batch request script file.

Not all UNM implementations support per-request CPU time limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventu-
ally run does not support the enforcement of this limit, then the limit is simply
ignored.

See the section entitled LIMITS for more information on the implementation of
batch request limits, and for a description of the precise syntax of a per-request CPU
time limit.

-lv per-process temporary file size limit [, warn-limit]
Set a per-process maximum and an optional warning temporary (volatile) f i le size
limit for all processes that constitute the running batch request. If any process
comprising the running request attempts to write to a temporary file such that the
file sire would increase beyond the maximum per-process temporary-file size limit
for the request, then that process is terminated by a signal chosen by the underlying

Page 9

UNIX implementation.

The ability to specify an optional warning limit exists for those UNIX operating sys-
tems that support per-process warning temporary-file size limits. When a warning
limit is exceeded, a signal as determined by the underlying UNIX implementation is
delivered to the offending process.

If a maximum limit (and optional warning limit) specification is comprised of two
or more tokens separated by whitespace characters, then the specification must be
enclosed within double quotes, or otherwise escaped such that Q 3 U b and the shell
will interpret the entire specification as a single character string token. This caveat
also applies when an embedded default -1v flag with its associated limit value(s)
appears within the batch request script file.

At the time of this writing, no UNIX operating system known to the author sup-
ported a distinctioa at the kernel level between permanent and temporary files.
Certainly, a pseudo-temporary file can be constructed by creating it, and then
unlinking its pathname. However, the file space allocated for such a file will be allo-
cated from the same pool of disk space that all other UNIX files are allocated from.

Until a mechanism is implemented in the kernel that knows about permanent and
temporary files, this limit cannot be supported in the sense most useful for batch
requests, namely the strict enforcement of disk quotas for permanent versus tem-
porary files.

Until such a time, this limit will simply be ignored.

See the section entitled LIMITS for more information on the implementation of
batch request limits, and for a description of the precise syntax of a per-process
temporary-file size limit.

Set a per-request maximum and an optional warning cumulative temporary (vola-
tile) fi le apace limit for all processes that constitute the running batch request. If
any process comprising the running request attempts to write to a temporary file
such that the file space consumed by all temporary files opened for writing by all of
the processes in the batch request would increase beyond the maximum per-request
temporary-file space limit for the request, then all of the processes in the request
will be terminated by a signal chosen by the underlying UNIX implementation.

The ability to specify an optional warning limit exists for those UNM operating sys-
tems that support per-request warning temporary-file space limits. When such a
warning limit is exceeded, a signal is delivered to one or more of the processes
comprising the running request, depending upon the underlying UNIX implementa-
tion.

If a maximum limit (and optional warning limit) Specification is comprised of two
or more tokens separated by whitespace characters, then the specification must be
enclosed within double quotes, or otherwise escaped such that &sub and the shell
will interpret the entire specification as a single character string token. This caveat
also applies when an embedded default -IV flag with its associated limit vaIue(s)
appears within the batch request script file.

At the time of this writing, no UNIX operating system known to the author sup-
ported a distinction a t the kernel level between permanent and temporary files.
Certainly, a pseudo-temporary file can be constructed by creating it, and then
unlinking its pathname. However, the file space allocated for such a file will be allo-
cated from the same pool of disk space that all other UNIX files are allocated from.

-IV per-request temporary file space limit [, warn-limit]

Page 10

Until a mechanism is implemented in the kernel that knows about permanent and
temporary files, this limit cannot be supported in the sense most useful for batch
requests, namely the strict enforcement of disk quotas for permanent versus tem-
porary files.

Until such a time, this limit will simply be ignored.

See the section entitled LIMITS for more information on the implementation of
batch request limits, and for a description of the precise syntax of a temporary-file
apace limit.

-1w per-proceaa working set aize limit
Set a per-proceaa maximum working set aize limit for all processes that constitute
the running batch request.

-mb

-me

Not all UNM implementations support per-procesa working set size limits, and such
a limit only makes sense in the context of a paged virtual memory machine. If a
batch request specifies this limit, and the machine upon which the batch request is
eventually run does not support the enforcement of this limit, then the limit is sim-
ply ignored.

See the section entitled LIMITS for more information on the implementation of
batch request limits, and for a description of the precise syntax of a per-proeeas
working set size limit.

Send mail to the user on the originating machine when the request begins execution.
If the -mu flag is also present, then mail is sent to the user specified for the -mu
flag instead of to the invoking user.

Send mail to the user on the originating machine when the request has ended execu-
tion. If the -mu flag is also present, then mail is sent to the user specified for the
-mu flag instead of to the invoking user.

-mu uaer-name
Specify that any mail concerning the request should be delivered to the user uaer-
name. User-name may be formatted either as uaer (containing no W characters),
or as user@machine. In the absence of this flag, any mail concerning the request
will be sent to the invoker on the originating machine.

- nr Declare that the request is non-restartable. If this flag is specified, then the request
will not be restarted by NQS upon system boot if the request was running at the
time of an NQS shutdown or system crash.

By default, NQS assumes that all requests are restartable, with the caveat that it is
the responsibility of the user to ensure that the request will execute correctly if res-
tarted, by the use of appropriate programming techniques.

Requests that are not running are always preserved across host crashes and NQS
shutdowns for later requeueing, with or without this flag.

When NQS is shutdown via an operator command to the qmgr(1M) NQS control
program, a SIGTERM signal is sent to all processes comprising all running NQS
requests on the local host, and all queued NQS requests are barred from beginning
execution. After a finite number of seconds have elapsed (typically sixty, but this
value can be overridden by the operator), all remaining processes comprising all
remaining running NQS requests are killed by the signal: SIGKILL.

For an NQS request to be properly restarted after an NQS shutdown, the -nr flag
must not be specified, and the spawned batch request shell must ignore SIGTERM
signals (which is done by default). The spawned batch request shell must also not

Page 11

exit before the final SIGKILL arrives. Since the batch request shell is simply
spawning commands and programs, waiting for their completion, this implies that
the commands and programs being executed by the batch request shell must also be
immune to SIGTERM signals, saving state as appropriate before being killed by
the final SIGKILL signal.

See the CAVEATS section below for more discussion concerning the restartability
of NQS batch requests.

Direct output generated by the batch request which is sent to the stdout file to the
named [machinc:][[/]path/] stdout-filename .
The brackets " [t t and "1" enclose optional portions of the stdout destination
machine, path, and stdout-filename .
If no explicit machine destination is specified, then the destination machine defaults
to the machine that originated the batch .request, or to the machine that will even-
tually run the request, depending on the respective absence, or presence of the -ko
flag.

If no machine destination is specified, and the path/filename does not begin with a
"/", then the current working directory is prepended to create a fully qualified path
name, provided that the -ko (keep stdout) flag is also absent. In all other cases,
any partial path/filename is interpreted relative to the user's home directory on the
atdout destination machine.

If no -0 [machine:][[path/] stdout-filename flag is specified, then all stdout output
for the batch request is sent to the file whose name consists of the first seven charac-
ters of the request-name followed by the characters: It.o", followed by the request
sequence number portion of the reque~t-id discussed below. In the absence of the
-ko flag, this default stdout output file will be placed on the machine that ori-
ginated the batch request in the current working directory, as defined when the
batch request was first submitted. Otherwise, the file will be placed in the user's
home directory on the execution machine.

-p priority Explicitly assign an intra-queue priority to the request. The specified priority must
be an integer, and must be in the range (0-631, inclusive. A value of 63 defines the
highest intra-queue request priority, while a value of 0 defines the lowest. This
priority does not determine the execution priority of the request. This priority is
only used to determine the relative ordering of requests within a queue.

When a request is added to a queue, it is placed at a specific position within the
queue such that i t appears ahead of all existing requests whose priority is less than
the priority of the new request. Similarly, all requests with a higher priority will
remain ahead of the new request when the queueing process is complete. When the
priority of the new request is equal to the priority of an existing request, the exist-
ing request takes precedence over the new request.

If no intra-queue priority is chosen by the user, then NQS assigns a default value.

-0 [machine:][[/]path/] stdout-filename

-q queue-name
Specify the queue to which the batch request is to be submitted. If no -q queue-
name specification is given, then the user's environment variable set is searched for
the variable: QSUB-QUEUE. If this environment variable is found, then the char-
acter string value for QSUB-QUEUE is presumed to name the queue to which the
request should be submitted. If the QSUB-QUEUE environment variable is not
found, then the request will be submitted to the default batch request queue, if

Page 12

' .

defined by the local system administrator. Otherwise, the request cannot be
queued, and an appropriate error message is displayed to this effect.

-r request-name
Assign the specified request-name to the request. In the absence of an explict -r
request-name specification, the request-name defaults to the name of the script file
(leading path name removed) given on the command line. If no script file was
given, then the default request-name assigned to the request is STDIN.

-re

-ro

In all cases, if the request-name is found to begin with a digit, then the character
'R' is prepended to prevent a request-name from beginning with a digit. All
request-names are truncated to a maximum length of 15 characters.

By default, all output generated by a batch request sent to the stderr file is tem-
porarily into a file residing in a protected directory on the machine that executes
the request. When the batch request completes execution, this file is then spooled to
its final destination, possibly on a remote machine.

This default spooling of the stderr output file is done to reduce the network traffic
costs incurred by the submitter (owner) of a batch request which is to return its
stderr output to a remote machine upon completion. In some cases, this behavior is
not desired. If i t is necessary to override this behavior, then the -re flag can be
specified which says that stderr output produced by the request is to be immediately
written to the final destination file, as output is generated, no matter what the net-
working cost.

Circumstances may not allow a given NQS implementation to support this flag, in
which case i t will be ignored, and the stderr output file will simply be spooled as it
ordinarily would without this flag.

By default, all output generated by a batch request sent to the stdout file is tem-
porarily spooled into a file residing in a protected directory on the machine that
executes the request. When the batch request completes execution, this file is then
spooled to its final destination, possibly on a remote machine.

This default spooling of the stdout output file is done to reduce the network traffic
costs incurred by the submitter (owner) of a batch request which is to return its
stdout output to a remote machine upon completion. In some cases, this behavior is
not desired. If i t is necessary to override this behavior, then the -ro flag can be
specified which says that stdout output produced by the request is to be immedi-
ately written to the final destination file, as output is generated, no matter what the
networking cost.

Circumstances may not allow a given NQS implementation to support this flag, in
which case i t will be ignored, and the stdout output file will simply be spooled as i t
ordinarily would without this flag.

-8 shell-name
Specify the absolute path name of the shell which will be used to interpret the
batch request script. This flag unconditionally overrides any shell strategy
configured on the execution machine for selecting which shell to spawn in order to
interpret the batch request script.

In the absence of this flag, the NQS system at the execution machine will use one of
three (3) distinct shell choice strategies for the execution of the batch request. Any
one of the three strategies can be configured by a system administrator for each
NQS machine.

Page 13

The three shell strategies are called:

--x

fized 7

f ree , and
login.

These shell strategies respectively cause’ the configured fized shell to be exec’d to
interpret ,all batch requests, cause the user’s login shell as defined in the password
file to be exec’d which in turn chooses and spawns the appropriate shell for inter-
preting the batch request script, or cause only the user’s login shell to be exec’d to
interpret the script.

A shell strategy of fized means that the same shell (as configured by the system
administrator), will be used to execute all batch requests.

A shell strategy of free will run the batch request script ezactly as would an
interactive invocation of the script, and is the default NQS shell strategy.

The strategies of fized and login exist for host systems that are short on available
free processes. In these two strategies, a single shell is exec’d, and that same shell is
the shell that executes all of the commands in the batch request script.

The shell strategy configured for a particular NQS system can be determined by the
qfimit (1) command.

Export all environment variables. When a batch request is submitted, the current
values of the environment variables: HOME, SHELL, PATH, LOGNAME (not all
systems), USER (not all systems), MAIL, and T Z are saved for later recreation
when the batch request is spawned, as the respective environment variables:
QSUB-HOME, QSUB-SHELL, QSUB-PATH, QSUB-LOGNAME,
QSUB-USER, QSUB-MAIL, and QSUB-TZ. Unless the -x flag is specified, no
other environment variables will be exported from the originating host for the batch
request. If the -x flag option is specified, then all remaining environment variables
whose names do not conflict with the automatically exported variables, are also
exported with the request. These additional environment variables will be recreated
under the same name when the batch request is spawned.

--I Submit the batch request silently. If the request is submitted successfully, then no
messages are displayed indicating this fact. Error messages will, however, always be
displayed.

If the batch request is successfully submitted and the --I flag has not been specified, the request-
id of the request is displayed to the user. A request-id is always of the form: seqno.hostname
where seqno refers to the sequence number assigned to the request by NQS, and hostname refers
to the name of originating local machine. This identifier is used throughout NQS to uniquely
identify the request, no matter where it is in the network.

The following events take place in the following order when an NQS batch request is spawned:

The process that will become the head of the process group for all processes
comprising the batch request is created by NQS.

Resource limits are enforced.

The real and effective group-id of the process is set to the group-id as defined in the
local password file for the request owner.

The real and effective user-id of the process is set to the real user-id of the batch
request owner.

Page 14

In all cases,

Y

The user file creation mask is set to the value that the user had on the originating
machine when the batch request was first submitted.

It the user explicitly specified a shell by use of the -8 flag (discussed above), then
that user-specified shell is chosen as the shell that will be used to execute the batch
request script. Otherwise, a shell is chosen based upon the shell strategy as
configured for the local NQS system (see the earlier discussion of the -8 Bag for a
description of the possible shell strategies that can be configured for an NQS sys-
tem).

The environment variables of HOME, SHELL, PATH, LOGNAME (not all sys-
tems), USER (not all systems), and MAIL are set from the user’s password file
entry, as though the user had logged directly into the execution machine.

The environment string: ENVIRONMENT=BATCH is added to the environment
so that shell scripts (and the user’s .profile (Bourne shell) or .cshrc and .login
(C-shell) scripts), can test for batch request execution when appropriate, and not
(for example) perform any setting of terminal characteristics, since a batch request
is not connected to an input terminal.

The environment variables of QSUB-WORKDIR, QSUB-HOST,
QSUB-REQNAME, and QSUB-REQID are added to the environment. These
environment variables equate to the obvious respective strings of the working direc-
tory a t the time that the request was submitted, the name of the originating host,
the name of the request, and the request request-id.

All of the remaining environment variables saved for recreation when the batch
request is spawned are added at this point to the environment. When a batch
request is initially submitted, the current values of the environment variables:
HOME, SHELL, PATH, LOGNAME (not all systems), USER (not all systems),
MAIL, and T Z are saved for later recreation when the batch request is spawned.
When recreated however, these variables are added to the environment under the
respective dames: QSUB-HOME, QSUB-SHELL, QSUB-PATH,
QSUB-LOGNAME, QSUB-USER, QSUB-MAIL, and QSUB-TZ, to avoid the
obvious conflict with the local version of these environment variables. Additionally,
all environment variables exported from the originating host by the -x option are
added to the environment at this time.

The current working directory is then set to the user’s home directory on the execu-
tion machine, and the chosen shell is exec’d to execute the batch request script with
the environment as constructed in the steps outlined above.

the chosen shell is exec’d as though it were the login shell. If the Bourne shell is
chosen to execute the script, then the .profile file is read. If the C-shell is chosen, then the
.cshrc and .login scripts are read.

If the user did not specify a specific shell for the batch request, then NQS chooses which shell
should be used to execute the shell script, based on the shell strategy as configured by the system
administrator (see the earlier discussion of the -s flag).

In such a case, a free shell.strategy instructs NQS to execute the login shell for the user (as
configured in the password file). The login shell is in turn instructed to examine the shell script
file, and fork another shell of the appropriate type to interpret the shell script, behaving ezactly
as an interactive invocation of the script.

Otherwise no additional shell is spawned, and the chosen f ized or login shell sequentially executes
the commands contained in the shell script file until completion of the batch request.

Page 15

QUEUE TYPES
NQS supports four different queue types that serve to provide four very different functions. These
four queue types are known as batch, device, pipe, and network.

The queue type of batch can only be used to execute NQS batch requests. Only NQS batch
requests created by the qsub(1) command can be placed in a batch queue.

The queue type of device can only be used to execute NQS device requests. Only NQS device
requests created by the qpr(1) command can be placed in a device queue.

Queues of type pipe are used to send NQS requests to other p i p e queues, or to request destination
queues of type batch or device, as appropriate for the request type. In general, p i p e queues, in
combination with network queues, act as the mechanism that NQS uses to transport both batch
and device requests to distant queues on other remote machines. It is also perfectly legal for a
p i p e queue t o transport requests to queues on the same machine.

When a pipe queue ia defined, it is given a destination set which defines the set of possible desti-
nation queues for requests entered in that pipe queue. In this manner, i t is possible for a batch or
device request to pass through many pipe queues on its way to its ultimate destination, which
must eventually be a queue of type batch or device (matching the request type).

Each pipe queue has an associated server. For each request handled by a pipe queue, the associ-
ated server is spawned which must select a queue destination for the request being handled, based
on the characteristics of the request, and upon the characteristics of each queue in the destination
set defined.for the pipe queue.

Since a different server can be configured for each pipe queue, and batch and device queues can be
endowed with the ,pipeonly attribute that will only admit requests queued via another pipe queue,
it is possible for respective NQS installations to use pipe queues as a request class mechanism,
placing requests that ask for different resource allocations in different queues, each of which can
have different associated limits and priorities.

It is also completely possible for a pipe queue server, when handling a request, to discover that no
destination queue will accept the request, for various reasons which can include insufficient
resource limits to execute the request, or a lack of a corresponding account or privilege for queue-
ing a t a remote queue. In such circumstances, the request will be deleted, and the user will be
notified by mail (see rnail(1)).

The queue type of network, as alluded to earlier, is implicitly used by p i p e queues to pass NQS
requests between machines, and is also used to handle queued file transfer operations.

NQS supports queue access restrictions. For each queue of queue type other than network, access
may be either unrestricted or restricted. If access is unrestricted, any request may enter the
queue. If access is reatricted, a request can only enter the queue if the requester or the requester's
login group has been given access to that queue (see qmgr(1M)). Requests submitted by root are
an exception; they are always queued, even if root has not explicitly been given access.

Use qstat(1) to determine who has access to a particular queue.

NQS supports many batch request resource limit types that can be applied to an NQS batch
request. The existence of configurable resource limits allows an NQS user to set resource limits
within which his or her request must execute. In many instances, smaller limit values can result
in a more favorable scheduling policy for a batch request.

The syntax used to specify a limit-value for one of the limit-flags (-l l imit-letter-type), is quite
flexible, and describes values for two general limit categories. These two general categories
respectively deal with time related limits, and those limits are not time related.

QUEUE ACCESS

LIMITS

Page 16

For finite CPU time limits, the limit-value is expressed in the reasonably obvious format:

.

..

[[hours :] minutes :] seconds [.milliseconds]

Whitespace can appear anywhere between the principal tokens, with the exception that no whi-
tespace can appear around the decimal point.

Example time limit-values are:

1234 : 58 : 21.29
12345 - 12345 seconds
121.1 - 121.100 seconds
59:Ol

- 1234 hrs 58 mins 21.290 secs

- 59 minutes and 1 second

For all other finite limits (with the exclusion of the nice limit-value -In), the acceptable syntax
is:

.fraction [units]

or

integer (.fraction] [units]

where the integer and fraction tokens represent strings of up to eight decimal digits, denoting the
obvious values. In both cases, the 'units of allocation may also be specified as one of the case
insensitive strings:

b

kb
kw
mb
mw

gw

W

gb

- bytes
- words
- kilobytes (2-10 bytes)
- kilowords (2-10 words)
- megabytes (2^20 bytes)
- megawords (2-20 words)
- gigabytes (2-30 bytes)
- gigawords (2-30 words)

In the absence of any units specification, the units of b y t e s are assumed.

For all limit types with the exception of the nice limit-value (-In), it is possible to state that no
limit should be applied.. This is done by specifying a limit-value of "unlimited", or any initial
substring thereof. Whenever an infinite limit-value is specified for a particular resource type,
then the batch request operates as though no explicit limits have been placed upon the
corresponding resource, other than by the limitations of the physical hardware involved.

The complications caused by batch request resource limits first show up when queueing a batch
request in a batch queue. This operation is.described in the following paragraphs.

If a batch request specifies a limit that cannot be enforced by the underlying UNIX implementa-
tion, then the limit is simply ignored, and the batch request will operate as though there were no
limit (other than the obvious physical maximums), placed upon that resource type. (See the
qlimit(1) command to find out what limits are supported by a given machine.)

For each remaining finite limit that can be supported by the underlying UNIX implementation
that is not a CPU time-limit or UNIX ezecution-time nice-value-limit, the limit-value is inter-
nally converted to the units of b y t e s or words, whichever is more appropriate for the underlying
machine architecture.

Page 17

As an example, a per-process memory size limit value of 321 megabytes would be interpreted as
321 x 2 - 2 0 bytes, provided that the underlying machine architecture was capable of directly
addressing single bytes. Thus the original limit coeficient of 321 would become 321 x 2^20. On
a machine that was only capable of addressing words, the appropriate conversion of 321 x 2-20
bytes / #of-bytes-per-word would be performed.

If the result of such a conversion would cause overflow when the coefficient was represented as a
signed-long integer on the supporting hardware, then the coefficient is replaced with the
coefficient of: of 2^N-1 where N is equal to the number of bits of precision in a signed long
integer. For typical 32-bit machines, this default eztreme limit would therefore be 2^91-1 bytes.
For word addressable machines in the supercomputer class supporting 64-bit long integers, the
default eztreme limit would be 2-68-1 words.

Lastly, some implementations of UNIX reserve coefficients of the form: 2*N-1 as synonymous with
infinity, meaning no limit is to be applied. For such UNIX implementations, NQS further decre-
ments the default eztreme limit so as not to imply infinity.

The identical internal conversion process as described in the preceding paragraphs is also per-
formed for each finite limit-value configured for a particular batch queue using the qmgr(1M) pro-
gram.

After all of the applicable limit-value8 have been converted as described above, each such result-
ing limit-value is then compared against the corresponding limit-value as configured for the desti-
nation batch queue. If, for every type of limit, the batch queue limit-value is greater than or
equal to the corresponding batch request limit-value , then the request can be successfully queued,
provided that no other anomalous conditions occur. For request infinity limit-values, the
corresponding queue limit-value must also be configured as infinity.

These resource limit checks are performed irrespective of the batch request arrival mechanism,
either by a direct use of the qJub(1) command, or by the indirect placement of a batch request
into a batch queue via a p ipe queue. It is impossible for a batch request to be queued in an NQS
batch queue if any of these resource limit checks fail.

Finally, if a request fails to specify a limit-value for a resource limit type that is supported on the
execution machine, then the corresponding limit-value configured for the destination queue
becomes the limit-value for the unspecified request limit.

Upon the successful queueing of a request in a batch queue, the set of limits under which the
request will execute is frozen, and will not be modified by subsequent qmgr(1M) commands that
alter the limits of the containing batch queue.

When an NQS batch request is spawned, a new process-group is established such that all processes
of the request exist in the same proces~-group. If the qdel(1) command is used to send a signal to
an NQS batch request, the signal is sent to all processes of the request in the created process-
group. However, should one or more processes of the request choose to successfully execute a
setpgrp(2) system call, then such processes will not receive any signals sent by the q d e l (1) com-
mand. This can lead to "rogue" requests whose constituent processes must be killed by other
means such as the kill(1) command. However, NQS takes advantage of any UNIX implementa-
tions that provide a mechanism of "locking" a process, and all of its subsequent children in a par-
ticular proce88-group . For such UNIX implementations, this problem does not occur.

It is extremely wise for all processes of an NQS request to catch any SIGTERM signals. By
default, the receipt of a SIGTERM signal causes the receiving process to die. NQS sends a
SIGTERM signal to all processes in the established process-group for a batch request as a
notification that the request should be prepared to be killed, either because of an abort queue
command issued by an operator using the qmgr(1h.l) program, or because it is necessary to shut-
down NQS and all running requests as part of a general shutdown procedure of the local host.

CAVEATS

I

I
I Page 18

'.

It must be understood that the spawned shell ignores SIGTERM signals. If the current immedi-
ate child of the shell does not ignore or catch SIGTERM signals, then it will be killed by the
receipt of such, and the shell will go on to execute the next command from the script (if there is
one). In any case, the shell will not be killed by the SIGTERM signal, though the executing
command will have been killed.

After receiving a SIGTERM signal delivered from NQS, a process of a batch request typically has
sixty seconds to get its "house in order" before receiving a SIGKILL signal (though the sixty
second duration can be changed by the operator).

All batch requests terminated because of an operator NQS shutdown request that did not specify
the -nr Rag are considered restartable by NQS, and are requeued (provided that the batch
request shell process is still present at the time of the SIGKILL signal broadcast as discussed
above), so that when NQS is rebooted, such batch requests will be respawned to continue execu-
tion. It is however, up to the user to make the request restartable by the appropriate program-
ming techniques. NQS simply spawns the request again as though it were being spawned for the
first time.

Upon completion of a batch request, a mail message can be sent to the submitter (see the discus-
sion of the -me Rag above). In many instances, the completion code of the spawned Bourne or
C-Shell will be displayed. This is merely the value returned by the shell through the ez i t (2) sys-
tem call.

Lastly, there is no good way to echo commands executed b.y unmodified versions of the Bourne
and C shells. While the C-ahell can be spawned in such a fashion as to echo the commands it
executes, i t is often very difficult to tell an echoed command from genuine output produced by
the batch request, because no "magic" character such as a '$' is displayed in front of the echoed
command. The Bourne shell does not support any echo option whatsoever.

Thus, one of the better ways to write the shell script for a batch request is to place appropriate
lines in the shell script of the form:

echo "explanatory-message"

where the echoed message should be a meaningful message chosen by the user.

Network queues have not yet been implemented.
In the present implementation, it is not possible to see the stderr or stdout files produced by the
batch request while the request is running, unless the -re and -ro flags have been respectively
specified.

LIMITATIONS AND IMPLEMENTATION NOTES

Lastly, the strange "at" syntax used to introduce embedded argument Rags was chosen because it
rarely conflicts with anything else present in a shell script file. NQS users with better minds will

1 (rightly) suggest improved alternatives to this convention.
I

SEE ALSO
mail(l), qdel(l), qdev(l), qlimit(l), qpr(l), qstat(l),
ki11(2), setpgrp(2), signal(2) in the NPSN UNIX System Programmer Reference Manual.
qmgr(1M) in the NPSN UNIX System Administrator Reference Manual.

Origin: Sterling Software Incorporated

August 1985 - Brent Kingsbury, Sterling Software
Original release.

I.

NPSN HISTORY

May 1986

Page 19

2. Government Accession No. 1. Report No.

VASA CR-177433
4. Title and Subtitle

The Network Qut?uei ng System

7. Author(sJ

Brent K. Kingsbury
9.. Performing Organization Name and Address

Sterling Software Incorporated
1121 San Antonio Road
Palo Alto, CA 94303

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

Point of contact: Karl Rowley, ! l / S 258-5, NASA Ames Research Center
Moffett Field, CA 94035 (415) 694-4417, FTS 464-4417

3. Recipient’s Catalog No.

5. Report Date

6. Performing Organization Code
De c ember 1 98 6

8. Performing Organization Report No.

10. Work Unit No.

T-3472
11. Contract or Grant No.

NAS2-11786
13. Type of Repon and Period Covered

Contractor Report
14. Sponsoring Agency Code

536-01-11

16. Abstract

20. Security Clasif. (of this page) 19. Security Uassif. (of this report)

T h i s paper describes the implementation o f a networked, UNIX based
queueing system developed for a government contract w i t h the Nat ional
Aeronautics and Space Admini s t r a t i on (N A S A) .
supports both batch and device requests, and provides the faci 1 i t i e s of
remote queueing, request routing, remote s t a tus , queue access controls ,
batch request resource quota limits, and remote output return.

The system discussed

21. NO. of P- 22. Rice’

17. Key Words (Suggested by Author(sJ)

Batch queueing software,
System software

Unclassified

18. Distribution Statement

Unclassified-Unl imi ted
Subject catergory 61

Unc 1 a-s s i f i ed 64

